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Abstract

Previous attempts at RST-style discourse
segmentation typically adopt features cen-
tered on a single token to predict whether
to insert a boundary before that token.
In contrast, we develop a discourse seg-
menter utilizing a set of pairing features,
which are centered on a pair of adjacent to-
kens in the sentence, by equally taking into
account the information from both tokens.
Moreover, we propose a novel set of global
features, which encode characteristics of
the segmentation as a whole, once we have
an initial segmentation. We show that both
the pairing and global features are use-
ful on their own, and their combination
achieved an F1 of 92.6% of identifying in-
sentence discourse boundaries, which is a
17.8% error-rate reduction over the state-
of-the-art performance, approaching 95%
of human performance. In addition, simi-
lar improvement is observed across differ-
ent classification frameworks.

1 Introduction

Discourse parsing is the task of identifying the
presence, the specific type, and possibly the hi-
erarchical structure of discourse relations in the
text. For most discourse parsers, regardless of
the adopted theoretical framework, discourse seg-
mentation, which aims to determine the bound-
aries of discourse units, constitutes the first stage
in the pipeline workflow. Therefore, the accu-
racy of the discourse segmentation model is cru-
cial to the overall performance. For parsers fol-
lowing Rhetorical Structure Theory (RST) (Mann
and Thompson, 1988), this first stage corresponds
to segmenting the input text into non-overlapping
elementary discourse units (EDUs).

Previous work on EDU segmentation has
demonstrated a strong correlation between the

lexico-syntactic structure and the discourse
boundaries. Indeed, EDUs are frequently clauses,
suggesting that EDU segmentation is just a
syntactic operation. However, Carlson et al.
(2001) have enumerated a number of exceptions
to clause-based EDU segmentation. For example,
clauses that are subjects or objects of a main verb
are not EDUs. Therefore, the sentence

Deciding what constitutes “terrorism”
can be a legalistic exercise.

consists of one single EDU, instead of two EDUs
segmented before can. So simply relying on
syntactic information is not sufficient for EDU
segmentation, and more sophisticated approaches
need to be taken.

Recent work on RST-style discourse segmenta-
tion, including Fisher and Roark (2007) and Bach
et al. (2012), report F1 scores over 90% on identi-
fying in-sentence boundaries. However, given the
importance of the segmentation model, we seek
further improvement, to help reduce error propa-
gation to downstream components.

Previous attempts at RST-style discourse seg-
mentation typically rely on token-centered fea-
tures, i.e., features that describe the characteristics
of a single token, possibly capturing some context
via features such as n-grams, to determine whether
an EDU boundary should be inserted before each
particular token. In contrast, we hypothesize that
both the preceding and following tokens should
be equally taken into account when making de-
cisions of whether a boundary should be inserted
in between. Moreover, since individual decisions
are interrelated, we hypothesize that it is helpful
to incorporate features which encode global char-
acteristics of the segmentation. We obtain these
global features by performing a two-pass segmen-
tation. Our experiments show that our pairing fea-
tures as well as global features are useful for bet-
ter EDU boundary recognition. Moreover, exper-
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[Then, by voice vote, the Senate voted a
pork-barrel bill,]e1 [approved Thursday
by the House,]e2 [for domestic military
construction.]e3

wsj 0623

e1 e2

elaboration

e1:3

same-unite1:2

e3

Figure 1: An example sentence composed of three
EDUs, with its RST discourse tree representation
shown below.

imenting with two different segmentation frame-
works, namely, sequential labeling based on Con-
ditional Random Fields (CRFs), and a sequence
independent binary classification using Logistic
Regression (LR) and Support Vector Machines
(SVMs), we show that the usefulness of our pair-
ing and global features is observable across differ-
ent frameworks and classifiers.

2 Background

Rhetorical Structure Theory (RST) (Mann and
Thompson, 1988) is probably the most widely ac-
cepted framework for discourse study. In RST, a
text is represented by a hierarchical tree structure,
in which leaf nodes are EDUs, and internal nodes
are larger text spans constituting multiple EDUs
related by specific discourse relations, e.g., CON-
TRAST and EXPLANATION.

For example, Figure 1 shows a text fragment
with one sentence and three EDUs. EDUs are seg-
mented by square brackets, and the RST-style dis-
course tree is shown below the text. e1 and e2 are
related by an ELABORATION relation, where e1 is
more salient, called the nucleus, while e2 is called
the satellite. Then, the text span (e1− e2) is re-
lated to e3 by a SAME-UNIT relation, which is a
multi-nuclear relation, in the sense that the two ar-
guments, (e1− e2) and e3, are equally salient.

This paper is focused on the problem of EDU
segmentation. The problem is formulated as find-
ing proper EDU boundaries in the text, and ex-
tracting the token sequence in between two adja-
cent boundaries as one single EDU. These EDUs

serve as the bottom-level discourse units in an
RST-style discourse tree, which is the ultimate
output of a discourse parser. Therefore, EDU seg-
mentation is the first stage of RST-style discourse
parsing.

3 Related Work

Conventionally, the task of automatic EDU seg-
mentation is formulated as: given a sentence,
the segmentation model identifies the boundaries
of the composite EDUs by predicting whether a
boundary should be inserted before each particular
token in the sentence. In particular, previous work
on discourse segmentation typically falls into two
major frameworks.

The first is to consider each token in the sen-
tence sequentially and independently. In this
framework, the segmentation model scans the sen-
tence token by token, and uses a binary classifier,
such as a support vector machine or logistic re-
gression, to predict whether it is appropriate to
insert a boundary before the token being exam-
ined. Examples following this framework include
Soricut and Marcu (2003), Subba and Di Eugenio
(2007), Fisher and Roark (2007), and Joty et al.
(2012).

The second is to frame the task as a sequential
labeling problem. In this framework, a given sen-
tence is considered as a whole, and the model as-
signs a label to each token, indicating whether this
token is the beginning of an EDU. Convention-
ally, the class label B is assigned to those tokens
which serve as the beginning of an EDU, and the
label C is assigned to other tokens. Because EDUs
cannot cross sentence boundaries, the first token
in the sentence is excluded in this labeling pro-
cess since it is trivially the beginning of an EDU.
For example, Figure 2 illustrates this sequential la-
beling process. The example sentence consists of
23 tokens, separated by whitespaces, and the last
22 tokens are considered in the sequential labeling
process. Each token is assigned a label, B or C,
by the labeling model. If the token is labeled as
B, e.g., the token that and the token to in boldface,
an EDU boundary is formed before it. Therefore,
the sentence is segmented into three EDUs, indi-
cated by the square bracket pairs. A representative
work following this sequential labeling framework
is Hernault et al. (2010), in which the sequential
labeling is implemented using Conditional Ran-
dom Fields (CRFs).



[ Some analysts are concerned , however
, ] [ that Banco Exterior may have waited
too long ] [ to diversify from its traditional
export-related activities . ] (wsj 0616)

Label sequence: C C C C C C B C C C C C C
C B C C C C C C C

Figure 2: An example of a sentence with three
EDUs. The tokens are separated by whitespaces
and the EDUs are segmented by square brackets.
The corresponding label sequence for the tokens
(excluding the first token) is shown below the sen-
tence.

An interesting exception to the above two ma-
jor frameworks is Bach et al. (2012)’s reranking
model, which obtains the best segmentation per-
formance reported so far: for the B class, the F1
score is 91.0% and the macro-average over the B
and C classes is 95.1%. The idea is to train a rank-
ing function whose input is the N-best output of a
base segmenter and outputs a reranked ordering of
these N candidates. In their work, Bach et al. uti-
lized a similar CRF-based segmenter to Hernault
et al.’s as a base segmenter.

Because the reranking procedure is almost or-
thogonal to the implementation of the base seg-
menter, it is worthwhile to explore the enhance-
ment of base segmenters for further performance
improvement. With respect to base segmenters,
which typically adopt the two major frameworks
introduced previously, the best performance is re-
ported by Fisher and Roark (2007), with an F1
score of 90.5% for recognizing in-sentence EDU
boundaries (the B class), using three individual
feature sets: basic finite-state features, full finite-
state features, and context-free features.

Existing segmentation models, as introduced in
the beginning of this section, have certain limita-
tions. First, the adopted feature sets are all cen-
tered on individual tokens, such as the part-of-
speech of the token, or the production rule of the
highest node in the syntactic tree which the partic-
ular token is the lexical head of. Although contex-
tual information can be partially captured via fea-
tures such as n-grams or part-of-speech n-grams,
the representation capacity of these contextual fea-
tures might be limited. In contrast, we hypothe-
size that, instead of utilizing features centered on

L2

T2T1

L3

T3

Lj

Tj

Lt

Tt

Figure 3: Our segmentation model in the form of a
linear-chain CRF. The first layer consists of token
nodes Ti’s, 1 ≤ i ≤ t, and the second layer repre-
sents the label Li of each pair of tokens Ti−1 and
Ti.

individual tokens, it is beneficial to equally take
into account the information from pairs of adja-
cent tokens, in the sense that the elementary in-
put unit of the segmentation model is a pair of
tokens, in which each token is represented by its
own set of features. Moreover, existing models
never re-consider their previous segmentation de-
cisions, in the sense that the discourse boundaries
are obtained by running the segmentation algo-
rithm only once. However, since individual de-
cisions are interrelated, by performing a second
pass of segmentation incorporating features which
encode global characteristics of the segmentation,
we may be able to correct some incorrect segmen-
tations of the initial run. Therefore, in this work,
we propose to overcome these two limitations by
our pairing features and a two-pass segmentation
procedure, to be introduced in Section 4.

4 Methodology

Figure 3 shows our segmentation model in the
form of a linear-chain Conditional Random Field.
Each sentence is represented by a single linear
chain. For each pair of adjacent tokens in a sen-
tence, i.e., Ti−1 and Ti, there is an associated binary
node Li to determine the label of the pair, i.e., the
existence of a boundary in between: if Li = B, an
EDU boundary is inserted before Ti; if Li =C, the
two adjacent tokens are considered a continuous
portion in an EDU.

We choose a CRF-based model to label the
whole sequence of tokens in a sentence, because
a CRF is capable of taking into account the se-
quential information in the context, and solving
the problem of determining boundaries in one sin-
gle pass, which has been shown to be effective by
Hernault et al. (2010) and Bach et al. (2012). This
sequential labeling framework is also beneficial to



the training process, in the sense that no additional
effort needs to be made to deal with the sparsity of
EDU boundaries in the data, which is usually an
issue for traditional binary classifiers.

As introduced previously, our segmentation
model differs from previous work on RST-style
discourse segmentation in two important ways.

First, rather than using a feature representation
centered on a single token (possibly with some
specifically designed features to partially incorpo-
rate contextual information), our boundary nodes
take the input from a pair of adjacent tokens, to
fully incorporate contextual information, allowing
competition between neighboring tokens as well.

Secondly, rather than producing predictions of
EDU boundaries by one pass of model applica-
tion, we adopt a two-pass segmentation algorithm,
which works as follows. We first apply our seg-
mentation model once for each sentence. We then
perform a second pass of segmentation, by con-
sidering some global features (to be described in
Section 5) derived from the initial segmentation.
The intuition behind these novel global features is
that whether a given token should be tagged as an
EDU boundary sometimes depends on the neigh-
boring EDU boundaries. For example, as sug-
gested by Joty et al. (2012), since EDUs are often
multi-word expressions, the distance between the
current token and the neighboring boundaries can
be a useful indication. In addition, it is also helpful
to know whether the tokens between the current
token and the neighboring boundary form a valid
syntactic constituent. Since these global indicators
are available only if we have an initial guess of
EDU boundaries, a second pass of segmentation is
necessary. Our two-pass segmentation procedure
might seem similar to Bach et al.’s reranking, in
the sense that the segmentation takes two steps to
produce final predictions. However, as discussed
in Section 3, in Bach et al.’s model, the reranking
stage is almost orthogonal to the base segmenta-
tion stage, while in our two-pass model, the two
stages are homogeneous and can serve as an en-
hancement to the base segmentation stage in the
reranking framework.

5 Features

As shown in Figure 3, each boundary node Bi in
the linear-chain CRF takes the input of a pair of
adjacent tokens, Ti and Ti+1, in the sentence. Each
such pair is encoded using a list of surface lexical

Basic features (for both passes)

The part-of-speech tag and the lemma of Ti /
Ti+1.

Whether Ti / Ti+1 is the beginning or the end
of the sentence.

The top syntactic tag of the largest syntactic
constituent starting from or ending with Ti /
Ti+1.

The depth of the largest syntactic constituent
starting from or ending with Ti / Ti+1.

The top production rule of the largest syntac-
tic constituent starting from or ending with Ti

/ Ti+1.

Global features (for the second pass)

The part-of-speech tag and the lemma of the
left / right neighboring EDU boundary.

The distance to the left / right neighboring
EDU boundary.

Number of syntactic constituents formed by
the tokens between Ti / Ti+1 and the left / right
neighboring EDU boundary.

The top syntactic tag of the lowest syntactic
subtree that spans from Ti / Ti+1 to the left /
right neighboring EDU boundary.

Contextual features (for both passes)

The previous and the next feature vectors.

Table 1: The list of features used in segmentation.

and syntactic features, as shown in Table 1.
The features are partitioned into three subsets:

basic features, global features, and contextual fea-
tures, where the basic and contextual features are
applicable for both the first and second pass, and
the global features are applicable for the second
pass only.

6 Comparison with Other Models

We first study how our proposed two-pass dis-
course segmenter based on pairing features per-
forms against existing segmentation models. In
this experiment, we train our linear-chain CRF
models on the RST Discourse Treebank (RST-DT)
(Carlson et al., 2001), which is a large discourse
corpus annotated in accordance with RST. By con-
vention, the corpus is partitioned into a training



Training Test

# of documents 347 38
# of sentences 7,455 992
# of EDUs 18,765 2,346
# of in-sentence boundaries 11,310 1,354

Table 2: Characteristics of the training and the test
set in RST-DT.

set of 347 documents and a test set of 38 docu-
ments. The detailed characteristics of the corpus
are shown in Table 2.

The data are preprocessed using Charniak and
Johnson’s reranking parser (Charniak and John-
son, 2005) to obtain syntactic structures. Our
linear-chain CRFs are designed using CRFSuite
(Okazaki, 2007), which is a fast implementation
of linear-chain CRFs.

To apply our two-pass segmentation strategy
(introduced in Section 4), we first train our model
by representing each sentence with a single lin-
ear chain, using the basic features and the con-
textual features as shown in Table 1. For both
the training and the test set, we apply the trained
one-pass model to obtain an initial EDU segmen-
tation for each sentence. We then derive global
features from this initial segmentation, and train
our second-pass CRF model, together with the ba-
sic and the contextual features.

Two evaluation methods have been used in this
task: the first is to evaluate the precision, recall,
and F1 scores of retrieving the in-sentence bound-
aries (the B class), which is the class that we care
more about. The second is to evaluate the perfor-
mance of both the two classes, B and C, based
on the macro-averaged precision, recall, and F1
scores of retrieving each class.

Table 3 demonstrates the performance evaluated
on the B class. We compare against several other
segmentation models. In the first section, CRF-
Seg (Hernault et al., 2010) is a model that adopts
a similar CRF-based sequential labeling frame-
work as ours, but with no pairing and global fea-
tures involved. The second section lists four pre-
vious works following the framework of indepen-
dent binary classification for each token, including
SPADE (Soricut and Marcu, 2003), S&E (Subba
and Di Eugenio, 2007), Joty et al. (Joty et al.,
2012), and F&R (Fisher and Roark, 2007). The
last model, Reranking (Bach et al., 2012), im-

Model Precision Recall F1 score

CRFSeg 91.5 87.6 89.5

SPADE 85.4 84.1 84.7
S&E 85.6 86.6 86.1
Joty et al. 88.0 92.3 90.1
F&R 91.3 89.7 90.5

Reranking 91.5 90.4 91.0

Ours 92.8 92.3 92.6

Human 98.5 98.2 98.3

Table 3: Performance (%) of our two-pass seg-
mentation model in comparison with other base-
line models and human performance, evaluated on
the B class.

plements a discriminative reranking model by ex-
ploiting subtree features to rerank the N-best out-
puts of a base CRF segmenter, and obtained the
best segmentation performance reported so far1.
As can be seen, in comparison to all the baseline
models, our two-pass model obtains the best per-
formance on all three metrics across two classes.
In fact, we obtain the same recall as Joty et al.,
but our precision is noticeably higher than theirs.
With respect to the F1 score, our model achieves an
error-rate reduction of 17.8% over the best base-
line, i.e., Reranking, and approaches to level of
95% of human performance on this task2. More-
over, since the reranking framework of Bach et al.
is almost orthogonal to our two-pass methodology,
in the sense that our two-pass segmentation model
can serve as a stronger base segmenter, further im-
provement can be expected by plugging our two-
pass model into the reranking framework.

Table 4 demonstrates the performance evaluated
on both classes and their macro-average. Only
two baseline models, CRFSeg and Reranking, re-
ported their performance based on this evaluation,
so other models are not included in this compar-
ison. As can be seen, among the three models
considered here, our two-pass segmentation model
with pairing features performs the best not only on
the B class but also on the C class, resulting in a
macro-averaged F1 score of 96.0%.

1The results of the baseline models in Tables 3 and 4 are
the ones originally reported in the papers cited, not from our
re-implementation.

2The human performance is measured by Soricut and
Marcu (2003).



Model Class Prec Rec F1

CRFSeg
B 91.5 87.6 89.5
C 99.0 99.3 99.2

Macro-Avg 95.2 93.5 94.3

Reranking
B 91.5 90.4 91.0
C 99.3 99.4 99.2

Macro-Avg 95.4 94.9 95.1

Ours
B 92.8 92.3 92.6
C 99.5 99.5 99.5

Macro-Avg 96.1 95.9 96.0

Table 4: Performance (%) of our two-pass seg-
mentation model in comparison with other seg-
mentation models and human performance, eval-
uated on the B and C classes and their macro-
average.

7 Error Propagation to Discourse
Parsing

As introduced in Section 1, discourse segmenta-
tion is the very first stage in an RST-style discourse
parser. Therefore, it is helpful to evaluate how
the overall performance of discourse parsing is in-
fluenced by the results of different segmentation
models.

We use the state-of-the-art RST-style discourse
parser (Feng and Hirst, 2014) as the target dis-
course parser, and feed the parser with three sets
of EDUs: (1) manual: the gold-standard EDUs as
in the annotation of RST-DT; (2) Joty et al., which
is the EDUs segmented using the released version
of Joty et al. (2012)’s segmenter3; and (3) ours:
the EDUs segmented using our own model.

To evaluate the performance, we use the stan-
dard unlabeled and labeled F-score for Span, Nu-
clearity, and Relation, as defined by Marcu (2000).
Moreover, to further illustrate the effect of auto-
matic segmentation on different levels of the text,
we conduct the evaluation on the intra-sentential,
multi-sentential, and text level separately. On
the intra-sentential level, the evaluation units are

3The code is vailable at http://alt.qcri.org/
discourse/Discourse_Parser_Dist.tar.gz.
Note that, in this released version, sentence splitting is
incorporated as part of the preprocessing procedure of the
software. For the sake of fair comparison, to rule out the
complication of different sentence splitting between their
software and our own models, we modified their code to
ensure all EDU segmenters are fed with the same set of
sentences as input.

Level Segmentation Span Nuc Rel

Intra
Joty et al. 78.7 70.8 60.8
Ours 85.1 77.5 66.8

Manual 96.3 87.4 75.1

Multi
Joty et al. 71.1 49.0 33.2
Ours 71.1 49.6 33.7

Manual 72.6 50.3 34.7

Text
Joty et al. 75.4 61.7 49.1
Ours 78.7 64.8 51.8

Manual 85.7 71.0 58.2

Table 5: The result of discourse parsing using dif-
ferent segmentation. The performance is evalu-
ated on intra-sentential, multi-sentential, and text
level separately, using the unlabeled and labeled
F-score.

discourse subtrees which do not cross sentence
boundaries. On the multi-sentential level, all dis-
course subtrees which span at least two sentences
are considered. On the text level, all discourse
subtrees are evaluated.

The results are shown in Table 5. As can
be seen, on the intra-sentential level, the influ-
ence of segmentation is significant. Evaluated on
Span, Nuclearity, and Relation, using our own seg-
mentation results in a 10% difference in F-score
(p < .01 in all cases)4, while the difference is
even larger when using Joty et al.’s segmentation.
Nonetheless, the overall parsing performance is
significantly better (p < .01) when using our seg-
mentation model than using Joty et al.’s.

However, the difference between using man-
ual and automatic segmentation almost disappears
when evaluated on multi-sentential level. In fact,
the absolute difference on all metrics is less than
1% and insignificant as well. Actually, this is not
a surprising finding: Most discourse constituents
in an RST-style discourse parse tree conform to
sentence boundaries. Moreover, the target dis-
course parser we adopt in this experiment takes a
two-stage parsing strategy: in the first stage, sen-
tences are processed to form sentence-level dis-
course subtrees, which in turn serve as the ba-
sic processing unit in the second parsing stage.
Therefore, due to the nature of the RST-style dis-

4All significance tests are performed using the Wilcoxon
signed-rank test.

http://alt.qcri.org/discourse/Discourse_Parser_Dist.tar.gz
http://alt.qcri.org/discourse/Discourse_Parser_Dist.tar.gz
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Figure 4: Our segmentation model with no pairing
features. The first layer consists of token nodes
Ti’s, and the second layer represents the label Li of
the single token Ti, representing whether an EDU
boundary exists before the token.

course trees and the particular parsing algorithm
in the target discourse parser, the influence of dif-
ferent segmentations is very much confined within
sentence boundaries, and thus has little effect on
higher levels of the tree. Based on the analysis,
the influence of segmentation on the text level is
almost entirely attributed to its influence on the
intra-sentential level.

8 Feature Analysis

In this section, we study the effect of our pairing
and global features, the two distinct characteristics
of our two-pass segmentation model, on the over-
all performance, and their generality across differ-
ent segmentation frameworks.

8.1 Feature Ablation across Different
Frameworks

First, starting from our full model, we perform a
series of feature ablation experiments. In each of
these experiments, we remove one of the compo-
nent features or their combinations from the fea-
ture set in training, and evaluate the performance
of the resulting model.

Removing pairing features (−p) By remov-
ing pairing features, our CRF-based segmentation
model shown in Figure 3 reduces to the one shown
in Figure 4, in which the input to each label node
Li is a single token Ti, rather than a pair of adja-
cent tokens Ti−1 and Ti. Note that the first token T1
is excluded in the sequence because there always
exists an EDU boundary (the beginning of the sen-
tence) before T1. In accordance, the features listed
in Table 1 now reduce to features describing each
single token Ti.

Removing global features (−g) By removing
global features, our two-pass segmentation model
reduces to a simple one-pass model, in which only

Tj-1

Lj

Tj

(a) With pairing features.

Lj

Tj

(b) No pairing features.

Figure 5: Our segmentation model in the frame-
work of independent binary classification.

the basic and contextual features in Table 1 are
used in training the model.

Removing both features (−pg) In this case, our
model reduces to a simple one-pass model, in
which only the basic and contextual features are
used, and all features are based on each individual
token Ti, rather than the token pair Ti and Ti+1.

Moreover, we wish to explore the generality of
our pairing features and the two-pass strategy, by
evaluating their effects across different segmenta-
tion frameworks. In particular, since our two-pass
segmentation model itself is a CRF-based sequen-
tial labeling model, in this experiment, we also
study the effect of removing pairing and global
features in the framework of independent binary
classification. Recall that in the framework of in-
dependent binary classification, each token (ex-
cluding T1) in a sentence is examined indepen-
dently in a sequence, and a binary classifier is used
to predict the label for that token.

Figure 5 shows our models in the framework of
independent binary classification. If pairing fea-
tures are enabled, as shown in Figure 5a, in each
classification, a pair of adjacent tokens, rather than
a single token, are examined, and the classifier
predicts whether an EDU boundary exists in be-
tween. If pairing features are disabled, the model
reduces to the one shown in Figure 5b.

In this experiment, we explore two underly-
ing classifiers in independent binary classification:
Logistic Regression (LR) and a linear-kernel Sup-
port Vector Machine (SVM). We implement these
two classifiers using Scikit-learn (Pedregosa et al.,
2011). For LR, all parameters are kept to their de-
fault values, while for SVM, we use auto class-
weights, which are adjusted based on the distri-
bution of different classes in the training data, to
overcome the sparsity of class B in the dataset.

Table 6 demonstrates the results of our feature
analysis. The first section lists the performance
of our full model in different segmentation frame-



Model Precision Recall F1 score

CRF 92.8 92.3 92.6
LR 92.9 92.2 92.5
SVM 92.6 92.8 92.7

CRF−p 91.3 91.1 91.2
LR−p 91.0 90.5 90.7
SVM−p 90.4 92.5 91.4

CRF−g 92.5 91.0 91.7
LR−g 91.7 91.0 91.3
SVM−g 84.7 94.7 89.4

CRF−pg 87.0 82.5 84.7
LR−pg 86.9 83.0 84.9
SVM−pg 70.5 94.6 80.8

Table 6: The effect of removing pairing features
(−p), removing global features (−g), and remov-
ing both (−pg), in comparison with the full model
in the first section, across different segmentation
frameworks. CRF stands for our standard two-
pass segmentation models based on linear-chain
CRFs, while LR and SVM stand for two different
classifiers in the framework of independent binary
classification.

works. As can be seen, our full models perform
similarly across different frameworks, where the
absolute difference in F1 is less than 0.2% and
insignificant. This is consistent with Hernault et
al. (2010)’s finding that, when a large number of
contextual features are incorporated, binary clas-
sifiers such as SVM can achieve competitive per-
formance with CRFs. The second section lists the
performance of our models with no pairing fea-
tures (−p). For all three resulting models, CRF−p,
LR−p, and SVM−p, their performance is signifi-
cantly poorer (p < .01) than their corresponding
full model in the first section. A similar trend is
observed when global features are removed (−g)
in the third section. However, with respect to
the underlying frameworks themselves, SVM is
significantly worse than CRF and LR (p < .01),
while such a significant difference is not observ-
able when pairing features are removed. Finally,
when both sets of features are removed (−pg),
as shown in the last section, the performance of
our models drops drastically (from above 90% to
below 85%). This suggests that the pairing and
global features, which have an important effect on
the performance by themselves, are even more im-

CRF

¬Error Error Total

CRF−p ¬Error 20357 52 20409
Error 100 149 249

Total 20457 201 20658

CRF

¬Error Error Total

CRF−g ¬Error 20436 0 20436
Error 21 201 222

Total 20457 201 20658

CRF−p

¬Error Error Total

CRF−g ¬Error 20339 97 20436
Error 70 152 222

Total 20409 249 20658

Table 7: Comparisons of error between our CRF-
based segmentation models with different feature
settings.

portant in their combination.
In this experiment, we demonstrate that the pair-

ing features and the global features have individ-
ual effect in improving the overall segmentation
performance, and such an improvement is signifi-
cant. Moreover, we observe similar effects across
different frameworks, which suggests the general-
ity of these two novel aspects of our segmentation
model.

8.2 Error Analysis

We now conduct a token-by-token error analysis
to study the distributions of the errors made by
our CRF-based models with different feature set-
tings. In particular, we evaluate the labeling er-
rors made on each token in the test set by our
fully-fledged two-pass segmentation model or the
models trained with pairing or global features re-
moved. Here, we restrict our comparisons to mod-
els following the sequential labeling framework,
i.e., the CRF-based models with −p or −g super-
script in Table 6. Once again, all tokens which are
the beginning of the sentence are not included in
this analysis.

The results are shown in Table 7. One inter-
esting observation is that, as demonstrated in the



[ “ Oh , I bet ] [ it ’ll be up 50 points on Monday , ” ] [ said Lucy Crump , a 78-year-old retired
housewife in Lexington , Ky. ] (CRF)

[ “ Oh , ] [ I bet ] [ it ’ll be up 50 points on Monday , ” ] [ said Lucy Crump , a 78-year-old retired
housewife in Lexington , Ky. ] (CRF−p)

[ They argue ] [ that the rights of RICO defendants and third parties ] [ not named in RICO
indictments ] [ have been unfairly damaged . ] (CRF)

[ They argue ] [ that the rights of RICO defendants and third parties ] [ not named in RICO
indictments have been unfairly damaged . ] (CRF−g)

Figure 6: Example sentences where the full model (CRF) is correct while the weaker model, (CRF−p)
or (CRF−g), makes mistakes.

second section of the table, on top of CRF−g, by
adding global features, our full model is able to
correct the 21 errors made by CRF−g while in-
troducing no additional errors in the process. In
addition, as illustrated in the third section of the
table, pairing and global features are almost com-
plementary to each other, in the sense that the 39%
of the errors made by CRF−p occur on cases where
CRF−g is correct, and reciprocally, 32% of errors
made by CRF−g happen on cases where CRF−p is
correct.

Finally, in Figure 6, we show some exam-
ple sentences, which our fully-fledged two-pass
segmentation model labels correctly, while the
weaker models make some errors.

9 Conclusion and Future Work

In this paper, we developed a two-pass RST-style
discourse segmentation model based on linear-
chain CRFs. In contrast to the typical approach
to EDU segmentation, which relies on token-
centered features in modeling, the features in our
segmenter are centered on pairs of tokens, to
equally take into account the information from the
previous and the following token surrounding a
potential EDU boundary position. Moreover, we
propose a novel two-pass segmentation strategy.
After the initial pass of segmentation, we obtain a
set of global features to characterize the segmenta-
tion result in a whole, which are considered in the
second pass for better segmentation.

Comparing with several existing discourse seg-
mentation models, we achieved the best perfor-
mance on identifying both the boundaries and non-

boundaries. Moreover, we studied the effect of
our novel pairing and global features, and demon-
strated that these two sets of features are both im-
portant to the overall performance, and such im-
portance is observable across different segmenta-
tion frameworks and classifiers. Finally, we exper-
imented with our segmentation model as a plug-
in in the state-of-the-art RST-style text-level dis-
course parser (Feng and Hirst, 2014) and evaluated
its influence to the overall parsing accuracy. We
found that the automatic segmentation has a huge
influence on the parsing accuracy, when evaluated
on intra-sentential level; however, such an influ-
ence is very minor on multi-sentential level.

For future work, we wish to explore the incor-
poration of our two-pass segmentation model into
the reranking framework of Bach et al. (2012).
Since our model is shown to be a stronger base
segmenter, with the reranking procedure, further
improvement in segmentation accuracy may be ex-
pected.
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