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Abstract

In this paper, we develop an RST-style text-
level discourse parser, based on the HILDA
discourse parser (Hernault et al., 2010b). We
significantly improve its tree-building step by
incorporating our own rich linguistic features.
We also analyze the difficulty of extending
traditional sentence-level discourse parsing to
text-level parsing by comparing discourse-
parsing performance under different discourse
conditions.

1 Introduction

In a well-written text, no unit of the text is com-
pletely isolated; interpretation requires understand-
ing the unit’s relation with the context. Research in
discourse parsing aims to unmask such relations in
text, which is helpful for many downstream applica-
tions such as summarization, information retrieval,
and question answering.

However, most existing discourse parsers oper-
ate on individual sentences alone, whereas discourse
parsing is more powerful for text-level analysis.
Therefore, in this work, we aim to develop a text-
level discourse parser. We follow the framework of
Rhetorical Structure Theory (Mann and Thompson,
1988) and we take the HILDA discourse parser (Her-
nault et al., 2010b) as the basis of our work, because
it is the first fully implemented text-level discourse
parser with state-of-the-art performance. We signif-
icantly improve the performance of HILDA’s tree-
building step (introduced in Section 5.1 below) by
incorporating rich linguistic features (Section 5.3).
In our experiments (Section 6), we also analyze the

difficulty with extending traditional sentence-level
discourse parsing to text-level parsing, by compar-
ing discourse parsing performance under different
discourse conditions.

2 Discourse-annotated corpora

2.1 The RST Discourse Treebank

Rhetorical Structure Theory (Mann and Thompson,
1988) is one of the most widely accepted frame-
works for discourse analysis. In the framework of
RST, a coherent text can be represented as a dis-
course tree whose leaves are non-overlapping text
spans called elementary discourse units (EDUs);
these are the minimal text units of discourse trees.
Adjacent nodes can be related through particular dis-
course relations to form a discourse subtree, which
can then be related to other adjacent nodes in the tree
structure. According to RST, there are two types of
discourse relations, hypotactic (“mononuclear”) and
paratactic (“multi-nuclear”). In mononuclear rela-
tions, one of the text spans, the nucleus, is more
salient than the other, the satellite, while in multi-
nuclear relations, all text spans are equally important
for interpretation.

The example text fragment shown in Figure 1
consists of four EDUs (e1-e4), segmented by square
brackets. Its discourse tree representation is shown
below in the figure, following the notational conven-
tion of RST. The two EDUs e1 and e2 are related by a
mononuclear relation ATTRIBUTION, where e1 is the
more salient span; the span (e1-e2) and the EDU e3
are related by a multi-nuclear relation SAME-UNIT,
where they are equally salient.
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[Catching up with commercial competitors in retail banking

and financial services,]e1 [they argue,]e2 [will be difficult,]e3

[particularly if market conditions turn sour.]e4

(e1) (e2)

attribution

(e1-e3)

same-unit

(e3)

(e4)

condition

(e1-e4)

(e1-e2)

Figure 1: An example text fragment (wsj 0616) com-
posed of four EDUs, and its RST discourse tree repre-
sentation.

The RST Discourse Treebank (RST-DT) (Carlson
et al., 2001), is a corpus annotated in the framework
of RST. It consists of 385 documents (347 for train-
ing and 38 for testing) from the Wall Street Jour-
nal. In RST-DT, the original 24 discourse relations
defined by Mann and Thompson (1988) are further
divided into a set of 18 relation classes with 78 finer-
grained rhetorical relations in total, which provides
a high level of expressivity.

2.2 The Penn Discourse Treebank

The Penn Discourse Treebank (PDTB) (Prasad et
al., 2008) is another annotated discourse corpus. Its
text is a superset of that of RST-DT (2159 Wall
Street Journal articles). Unlike RST-DT, PDTB does
not follow the framework of RST; rather, it follows
a lexically grounded, predicate-argument approach
with a different set of predefined discourse relations,
as proposed by Webber (2004). In this framework, a
discourse connective (e.g., because) is considered to
be a predicate that takes two text spans as its argu-
ments. The argument that the discourse connective
structurally attaches to is called Arg2, and the other
argument is called Arg1 — unlike in RST, the two
arguments are not distinguished by their saliency
for interpretation. Another important difference be-
tween PDTB and RST-DT is that in PDTB, there
does not necessarily exist a tree structure covering
the full text, i.e., PDTB-styled discourse relations
exist only in a very local contextual window. In
PDTB, relation types are organized hierarchically:
there are 4 classes, which can be further divided into
16 types and 23 subtypes.

3 Related work

Discourse parsing was first brought to prominence
by Marcu (1997). Since then, many different algo-
rithms and systems (Soricut and Marcu, 2003; Reit-
ter, 2003; LeThanh et al., 2004; Baldridge and Las-
carides, 2005; Subba and Di Eugenio, 2009; Sagae,
2009; Hernault et al., 2010b) have been proposed,
which extracted different textual information and
adopted various approaches for discourse tree build-
ing. Here we briefly review two fully implemented
text-level discourse parsers with the state-of-the-art
performance.

The HILDA discourse parser of Hernault and his
colleagues (duVerle and Prendinger, 2009; Hernault
et al., 2010b) is the first fully-implemented feature-
based discourse parser that works at the full text
level. Hernault et al. extracted a variety of lexi-
cal and syntactic features from the input text, and
trained their system on RST-DT. While some of their
features were inspired by the previous work of oth-
ers, e.g., lexico-syntactic features borrowed from
Soricut and Marcu (2003), Hernault et al. also pro-
posed the novel idea of discourse tree building by
using two classifiers in cascade — a binary struc-
ture classifier to determine whether two adjacent text
units should be merged to form a new subtree, and
a multi-class classifier to determine which discourse
relation label should be assigned to the new subtree
— instead of the more-usual single multi-class clas-
sifier with the additional label NO-REL. Hernault
et al. obtained 93.8% F-score for EDU segmenta-
tion, 85.0% accuracy for structure classification, and
66.8% accuracy for 18-class relation classification.

Lin et al. (2009) attempted to recognize implicit
discourse relations (discourse relations which are
not signaled by explicit connectives) in PDTB by us-
ing four classes of features — contextual features,
constituent parse features, dependency parse fea-
tures, and lexical features — and explored their indi-
vidual influence on performance. They showed that
the production rules extracted from constituent parse
trees are the most effective features, while contex-
tual features are the weakest. Subsequently, they
fully implemented an end-to-end PDTB-style dis-
course parser (Lin et al., 2010).

Recently, Hernault et al. (2010a) argued that more
effort should be focused on improving performance
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on certain infrequent relations presented in the dis-
course corpora, since due to the imbalanced distribu-
tion of different discourse relations in both RST-DT
and PDTB, the overall accuracy score can be over-
whelmed by good performance on the small sub-
set of frequent relations, even though the algorithms
perform poorly on all other relations. However, be-
cause of infrequent relations for which we do not
have sufficient instances for training, many unseen
features occur in the test data, resulting in poor test
performance. Therefore, Hernault et al. proposed
a semi-supervised method that exploits abundant,
freely-available unlabeled data as a basis for feature
vector extension to alleviate such issues.

4 Text-level discourse parsing

Not until recently has discourse parsing for full texts
been a research focus — previously, discourse pars-
ing was only performed on the sentence level1. In
this section, we explain why we believe text-level
discourse parsing is crucial.

Unlike syntactic parsing, where we are almost
never interested in parsing above sentence level,
sentence-level parsing is not sufficient for discourse
parsing. While a sequence of local (sentence-level)
grammaticality can be considered to be global gram-
maticality, a sequence of local discourse coherence
does not necessarily form a globally coherent text.
For example, the text shown in Figure 2 contains
two sentences, each of which is coherent and sen-
sible itself. However, there is no reasonable content
transition between these two sentences, so the com-
bination of the two sentences does not make much
sense. If we attempt to represent the text as an RST
discourse tree like the one shown in Figure 1, we
find that no discourse relation can be assigned to re-
late the spans (e1-e2) and (e3-e4) and the text cannot
be represented by a valid discourse tree structure.

In order to rule out such unreasonable transitions
between sentences, we have to expand the text units
upon which discourse parsing is performed: from
sentences to paragraphs, and finally paragraphs to

1Strictly speaking, for PDTB-style discourse parsing (e.g.,
Lin et al. (2009; 2010)), there is no absolute distinction between
sentence-level and text-level parsing, since in PDTB, discourse
relations are annotated at a level no higher than that of adjacent
sentences. Here we are concerned with RST-style discourse
parsing.

[No wonder he got an A for his English class,]e1 [he was

studying so hard.]e2 [He avoids eating chocolates,]e3 [since he

is really worried about gaining weight.]e4

(e1) (e2)

cause

(e1-e2)

(e3) (e4)

cause

(e3-e4)

?

Figure 2: An example of incoherent text fragment com-
posed of two sentences. The two EDUs associated with
each sentence are coherent themselves, whereas the com-
bination of the two sentences is not coherent at the sen-
tence boundary. No discourse relation can be associated
with the spans (e1-e2) and (e3-e4).

the full text.
Text-level discourse parsing imposes more con-

straints on the global coherence than sentence-level
discourse parsing. However, if, technically speak-
ing, text-level discourse parsing were no more diffi-
cult than sentence-level parsing, any sentence-level
discourse parser could be easily upgraded to a text-
level discourse parser just by applying it to full
texts. In our experiments (Section 6), we show
that when applied above the sentence level, the per-
formance of discourse parsing is consistently infe-
rior to that within individual sentences, and we will
briefly discuss what the key difficulties with extend-
ing sentence-level to text-level discourse parsing are.

5 Method

We use the HILDA discourse parser of Hernault et
al. (2010b) as the basis of our work. We refine Her-
nault et al.’s original feature set by incorporating our
own features as well as some adapted from Lin et al.
(2009). We choose HILDA because it is a fully im-
plemented text-level discourse parser with the best
reported performance up to now. On the other hand,
we also follow the work of Lin et al. (2009), because
their features can be good supplements to those used
by HILDA, even though Lin et al.’s work was based
on PDTB. More importantly, Lin et al.’s strategy of
performing feature selection prior to classification
proves to be effective in reducing the total feature
dimensions, which is favorable since we wish to in-
corporate rich linguistic features into our discourse
parser.
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5.1 Bottom-up approach and two-stage
labeling step

Following the methodology of HILDA, an input text
is first segmented into EDUs. Then, from the EDUs,
a bottom-up approach is applied to build a discourse
tree for the full text. Initially, a binary Structure clas-
sifier evaluates whether a discourse relation is likely
to hold between consecutive EDUs. The two EDUs
which are most probably connected by a discourse
relation are merged into a discourse subtree of two
EDUs. A multi-class Relation classifier evaluates
which discourse relation label should be assigned to
this new subtree. Next, the Structure classifier and
the Relation classifier are employed in cascade to re-
evaluate which relations are the most likely to hold
between adjacent spans (discourse subtrees of any
size, including atomic EDUs). This procedure is re-
peated until all spans are merged, and a discourse
tree covering the full text is therefore produced.

Since EDU boundaries are highly correlated with
the syntactic structures embedded in the sentences,
EDU segmentation is a relatively trivial step — us-
ing machine-generated syntactic parse trees, HILDA
achieves an F-score of 93.8% for EDU segmenta-
tion. Therefore, our work is focused on the tree-
building step, i.e., the Structure and the Relation
classifiers. In our experiments, we improve the over-
all performance of these two classifiers by incorpo-
rating rich linguistic features, together with appro-
priate feature selection. We also explore how these
two classifiers perform differently under different
discourse conditions.

5.2 Instance extraction

Because HILDA adopts a bottom-up approach for
discourse tree building, errors produced on lower
levels will certainly propagate to upper levels, usu-
ally causing the final discourse tree to be very dis-
similar to the gold standard. While appropriate post-
processing may be employed to fix these errors and
help global discourse tree recovery, we feel that it
might be more effective to directly improve the raw
instance performance of the Structure and Relation
classifiers. Therefore, in our experiments, all classi-
fications are conducted and evaluated on the basis of
individual instances.

Each instance is of the form (SL,SR), which is a

pair of adjacent text spans SL (left span) and SR (right
span), extracted from the discourse tree representa-
tion in RST-DT. From each discourse tree, we ex-
tract positive instances as those pairs of text spans
that are siblings of the same parent node, and neg-
ative examples as those pairs of adjacent text spans
that are not siblings in the tree structure. In all in-
stances, both SL and SR must correspond to a con-
stituent in the discourse tree, which can be either an
atomic EDU or a concatenation of multiple consec-
utive EDUs.

5.3 Feature extraction
Given a pair of text spans (SL,SR), we extract the
following seven types of features.

HILDA’s features: We incorporate the origi-
nal features used in the HILDA discourse parser
with slight modification, which include the follow-
ing four types of features occurring in SL, SR, or
both: (1) N-gram prefixes and suffixes; (2) syntac-
tic tag prefixes and suffixes; (3) lexical heads in the
constituent parse tree; and (4) POS tag of the domi-
nating nodes.

Lin et al.’s features: Following Lin et al. (2009),
we extract the following three types of features: (1)
pairs of words, one from SL and one from SR, as
originally proposed by Marcu and Echihabi (2002);
(2) dependency parse features in SL, SR, or both; and
(3) syntactic production rules in SL, SR, or both.

Contextual features: For a globally coherent
text, there exist particular sequential patterns in the
local usage of different discourse relations. Given
(SL,SR), the pair of text spans of interest, contextual
features attempt to encode the discourse relations as-
signed to the preceding and the following text span
pairs. Lin et al. (2009) also incorporated contextual
features in their feature set. However, their work
was based on PDTB, which has a very different an-
notation framework from RST-DT (see Section 2):
in PDTB, annotated discourse relations can form a
chain-like structure such that contextual features can
be more readily extracted. However, in RST-DT, a
full text is represented as a discourse tree structure,
so the previous and the next discourse relations are
not well-defined.

We resolve this problem as follows. Suppose SL =
(ei-e j) and SR = (e j+1-ek), where i≤ j < k. To find
the previous discourse relation RELprev that immedi-
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ately precedes (SL,SR), we look for the largest span
Sprev = (eh-ei−1),h < i, such that it ends right before
SL and all its leaves belong to a single subtree which
neither SL nor SR is a part of. If SL and SR belong
to the same sentence, Sprev must also be a within-
sentence span, and it must be a cross-sentence span
if SL and SR are a cross-sentence span pair. RELprev

is then the discourse relation which covers Sprev. The
next discourse relation RELnext that immediately fol-
lows (SL,SR) is found in the analogous way.

However, when building a discourse tree using
a greedy bottom-up approach, as adopted by the
HILDA discourse parser, RELprev and RELnext are
not always available; therefore these contextual fea-
tures represent an idealized situation. In our ex-
periments we wish to explore whether incorporating
perfect contextual features can help better recognize
discourse relations, and if so, set an upper bound of
performance in more realistic situations.

Discourse production rules: Inspired by Lin et
al. (2009)’s syntactic production rules as features,
we develop another set of production rules, namely
discourse production rules, derived directly from the
tree structure representation in RST-DT.

For example, with respect to the RST discourse
tree shown in Figure 1, we extract the following
discourse production rules: ATTRIBUTION → NO-
REL NO-REL, SAME-UNIT → ATTRIBUTION NO-
REL, CONDITION → SAME-UNIT NO-REL, where
NO-REL denotes a leaf node in the discourse subtree.

The intuition behind using discourse production
rules is that the discourse tree structure is able to re-
flect the relatedness of different discourse relations
— discourse relations on the lower level of the tree
can determine the relation of their direct parent to
some degree. Hernault et al. (2010b) attempt to
capture such relatedness by traversing a discourse
subtree and encoding its traversal path as features,
but since they used a depth-first traversal order, the
information encoded in a node’s direct children is
too distant; whereas most useful information can be
gained from the relations covering these direct chil-
dren.

Semantic similarities: Semantic similarities are
useful for recognizing relations such as COMPARI-
SON, when there are no explicit syntactic structures
or lexical features signaling such relations.

We use two subsets of similarity features for verbs

and nouns separately. For each verb in either SL or
SR, we look up its most frequent verb class ID in
VerbNet2, and specify whether that verb class ID ap-
pears in SL, SR, or both. For nouns, we extract all
pairs of nouns from (SL,SR), and compute the aver-
age similarity among these pairs. In particular, we
use path similarity, lch similarity, wup similarity,
res similarity, jcn similarity, and lin similarity pro-
vided in the nltk.wordnet.similarity package (Bird et
al., 2009) for computing WordNet-based similarity,
and always choose the most frequent sense for each
noun.

Cue phrases: We compile a list of cue phrases,
the majority of which are connectives collected by
Knott and Dale (1994). For each cue phrase in this
list, we determine whether it appears in SL or SR. If
a cue phrase appears in a span, we also determine
whether its appearance is in the beginning, the end,
or the middle of that span.

5.4 Feature selection

If we consider all possible combinations of the fea-
tures listed in Section 5.3, the resulting data space
can be horribly high dimensional and extremely
sparse. Therefore, prior to training, we first conduct
feature selection to effectively reduce the dimension
of the data space.

We employ the same feature selection method as
Lin et al. (2009). Feature selection is done for each
feature type separately. Among all features belong-
ing to the feature type to be selected, we first ex-
tract all possible features that have been seen in the
training data, e.g., when applying feature selection
for word pairs, we find all word pairs that appear
in some text span pair that have a discourse relation
between them. Then for each extracted feature, we
compute its mutual information with all 18 discourse
relation classes defined in RST-DT, and use the high-
est mutual information to evaluate the effectiveness
of that feature. All extracted features are sorted to
form a ranked list by effectiveness. After that, we
use a threshold to select the top features from that
ranked list. The total number of selected features
used in our experiments is 21,410.

2http://verbs.colorado.edu/˜mpalmer/
projects/verbnet
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6 Experiments

As discussed in Section 5.1, our research focus in
this paper is the tree-building step of the HILDA
discourse parser, which consists of two classifica-
tions: Structure and Relation classification. The bi-
nary Structure classifier decides whether a discourse
relation is likely to hold between consecutive text
spans, and the multi-class Relation classifier decides
which discourse relation label holds between these
two text spans if the Structure classifier predicts the
existence of such a relation.

Although HILDA’s bottom-up approach is aimed
at building a discourse tree for the full text, it does
not explicitly employ different strategies for within-
sentence text spans and cross-sentence text spans.
However, we believe that discourse parsing is signif-
icantly more difficult for text spans at higher levels
of the discourse tree structure. Therefore, we con-
duct the following three sub-experiments to explore
whether the two classifiers behave differently under
different discourse conditions.

Within-sentence: Trained and tested on text span
pairs belonging to the same sentence.

Cross-sentence: Trained and tested on text span
pairs belonging to different sentences.

Hybrid: Trained and tested on all text span pairs.
In particular, we split the training set and the test-

ing set following the convention of RST-DT, and
conduct Structure and Relation classification by in-
corporating our rich linguistic features, as listed in
Section 5.3 above. To rule out all confounding fac-
tors, all classifiers are trained and tested on the basis
of individual text span pairs, by assuming the dis-
course subtree structure (if any) covering each indi-
vidual text span has been already correctly identified
(no error propagation).

6.1 Structure classification

The number of training and testing instances used in
this experiment for different discourse conditions is
listed in Table 1. Instances are extracted in the man-
ner described in Section 5.2. We observe that the
distribution of positive and negative instances is ex-
tremely skewed for cross-sentence instances, while
for all conditions, the distribution is similar in the
training and the testing set.

In this experiment, classifiers are trained using

Dataset Pos # Neg # Total #

Within
Training 11,087 10,188 21,275
Testing 1,340 1,181 2,521

Cross
Training 6,646 49,467 56,113
Testing 882 6,357 7,239

Hybrid
Training 17,733 59,655 77,388
Testing 2,222 7,539 9,761

Table 1: Number of training and testing instances used in
Structure classification.

the SVMperf classifier (Joachims, 2005) with a lin-
ear kernel.

Structure classification performance for all three
discourse conditions is shown in Table 2. The
columns Full and NC (No Context) denote the per-
formance of using all features listed in Section 5.3
and all features except for contextual features re-
spectively. As discussed in Section 5.3, contex-
tual features represent an ideal situation which is
not always available in real applications; therefore,
we wish to see how they affect the overall per-
formance by comparing the performance obtained
with them and without them as features. The col-
umn HILDA lists the performance of using Hernault
et al. (2010b)’s original features, and Baseline de-
notes the performance obtained by always picking
the more frequent class. Performance is measured
by four metrics: accuracy, precision, recall, and F1
score on the test set, shown in the first section in
each sub-table.

Under the within-sentence condition, we observe
that, surprisingly, incorporating contextual features
boosts the overall performance by a large margin,
even though it requires only 38 additional features.
Under the cross-sentence condition, our features re-
sult in lower accuracy and precision than HILDA’s
features. However, under this discourse condition,
the distribution of positive and negative instances
in both training and test sets is extremely skewed,
which makes it more sensible to compare the recall
and F1 scores for evaluation. In fact, our features
achieve much higher recall and F1 score despite a
much lower precision and a slightly lower accuracy.

In the second section of each sub-table, we also
list the F1 score on the training data. This allows
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us to compare the model-fitting capacity of differ-
ent feature sets from another perspective, especially
when the training data is not sufficiently well fitted
by the model. For example, looking at the training
F1 score under the cross-sentence condition, we can
see that classification using full features and clas-
sification without contextual features both perform
significantly better on the training data than HILDA
does. At the same time, such superior performance
is not due to possible over-fitting on the training
data, because we are using significantly fewer fea-
tures (21,410 for Full and 21,372 for NC) than Her-
nault et al. (2010b)’s 136,987; rather, it suggests
that using carefully selected rich linguistic features
is able to better model the problem itself.

Comparing the results obtained under the first
two conditions, we see that the binary classification
problem of whether a discourse relation is likely to
hold between two adjacent text spans is much more
difficult under the cross-sentence condition. One
major reason is that many features that are predictive
for within-sentence instances are no longer applica-
ble (e.g., Dependency parse features). In addition,
given the extremely imbalanced nature of the dataset
under this discourse condition, we might need to
employ special approaches to deal with this needle-
in-a-haystack problem. This difficulty can also be
perceived from the training performance. Compared
to the within-sentence condition, all features fit the
training data much more poorly under the cross-
sentence condition. This suggests that sophisticated
features or models in addition to our rich linguis-
tic features must be incorporated in order to fit the
problem sufficiently well. Unfortunately, this under-
fitting issue cannot be resolved by exploiting any
abundant linguistic resources for feature vector ex-
tension (e.g., Hernault et al. (2010a)), because the
poor training performance is no longer caused by the
unknown features found in test vectors.

Turning to the hybrid condition, the performance
of Full features is surprisingly good, probably be-
cause we have more available training data than the
other two conditions. However, with contextual fea-
tures removed, our features perform quite similarly
to those of Hernault et al. (2010b), but still with
a marginal, but nonetheless statistically significant,
improvement on recall and F1 score.

Full NC HILDA Baseline

Within-sentence

Accuracy 91.04* 85.17* 83.74 53.15
Precision 92.71* 85.36* 84.81 53.15
Recall 90.22* 87.01* 84.55 100.00
F1 91.45* 86.18* 84.68 69.41

Train F1 97.87* 96.23* 95.42 68.52

Cross-sentence

Accuracy 87.69 86.68 89.13 87.82
Precision 49.60 44.73 61.90 −
Recall 63.95* 39.46* 28.00 0.00
F1 55.87* 41.93* 38.56 −

Train F1 87.25* 71.93* 49.03 −
Hybrid

Accuracy 95.64* 87.03 87.04 77.24
Precision 94.77* 74.19 79.41 −
Recall 85.92* 65.98* 58.15 0.00
F1 89.51* 69.84* 67.13 −

Train F1 93.15* 80.79* 72.09 −

Table 2: Structure classification performance (in percent-
age) on text spans of within-sentence, cross-sentence, and
all level. Performance that is significantly superior to that
of HILDA (p < .01, using the Wilcoxon sign-rank test for
significance) is denoted by *.

6.2 Relation classification

The Relation classifier has 18 possible output la-
bels, which are the coarse-grained relation classes
defined in RST-DT. We do not consider nuclearity
when classifying different discourse relations, i.e.,
ATTRIBUTION[N][S] and ATTRIBUTION[S][N] are
treated as the same label. The training and test in-
stances in this experiment are from the positive sub-
set used in Structure classification.

In this experiment, classifiers are trained using
LibSVM classifier (Chang and Lin, 2011) with a lin-
ear kernel and probability estimation.

Relation classification performance under three
discourse conditions is shown in Table 3. We list
the performance achieved by Full, NC, and HILDA
features, as well as the majority baseline, which is
obtained by always picking the most frequent class
label (ELABORATION in all cases).
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Full NC HILDA Baseline

Within-sentence

MAFS 0.490 0.485 0.446 −
WAFS 0.763 0.762 0.740 −
Acc (%) 78.06 78.13 76.42 31.42

TAcc (%) 99.90 99.93 99.26 33.38

Cross-sentence

MAFS 0.194 0.184 0.127 −
WAFS 0.334 0.329 0.316 −
Acc (%) 46.83 46.71 45.69 42.52

TAcc (%) 78.30 67.30 57.70 47.79

Hybrid

MAFS 0.440 0.428 0.379 −
WAFS 0.607 0.604 0.588 −
Acc (%) 65.30 65.12 64.18 35.82

TAcc (%) 99.96 99.95 90.11 38.78

Table 3: Relation classification performance on text
spans of within-sentence, cross-sentence, and all levels.

Following Hernault et al. (2010a), we use Macro-
averaged F-scores (MAFS) to evaluate the perfor-
mance of each classifier. Macro-averaged F-score
is not influenced by the number of instances that
exist in each relation class, by equally weighting
the performance of each relation class3. Therefore,
the evaluation is not biased by the performance on
those prevalent classes such as ATTRIBUTION and
ELABORATION. For reasons of space, we do not
show the class-wise F-scores, but in our results,
we find that using our features consistently provides
superior performance for most class relations over
HILDA’s features, and therefore results in higher
overall MAFS under all conditions. We also list two
other metrics for performance on the test data —
Weight-averaged F-score (WAFS), which weights
the performance of each relation class by the num-
ber of its existing instances, and the testing accuracy
(Acc) — but these metrics are relatively more bi-

3No significance test is reported for relation classification,
because we are comparing MAFS, which equally weights the
performance of each relation. Therefore, traditional signifi-
cance tests which operate on individual instances rather than
individual relation classes are not applicable.

ased evaluation metrics in this task. Similar to Struc-
ture classification, the accuracy on the training data
(TAcc)4 is listed in the second section of each sub-
table. It demonstrates that our carefully selected rich
linguistic features are able to better fit the classifi-
cation problem, especially under the cross-sentence
condition.

Similar to our observation in Structure classifica-
tion, the performance of Relation classification for
cross-sentence instances is also much poorer than
that on within-sentence instances, which again re-
veals the difficulty of text-level discourse parsing.

7 Conclusions

In this paper, we aimed to develop an RST-style
text-level discourse parser. We chose the HILDA
discourse parser (Hernault et al., 2010b) as the ba-
sis of our work, and significantly improved its tree-
building step by incorporating our own rich linguis-
tic features, together with features suggested by Lin
et al. (2009). We analyzed the difficulty of extending
traditional sentence-level discourse parsing to text-
level parsing by showing that using exactly the same
set of features, the performance of Structure and Re-
lation classification on cross-sentence instances is
consistently inferior to that on within-sentence in-
stances. We also explored the effect of contextual
features on the overall performance. We showed
that contextual features are highly effective for both
Structure and Relation classification under all dis-
course conditions. Although perfect contextual fea-
tures are available only in idealized situations, when
they are correct, together with other features, they
can almost correctly predict the tree structure and
better predict the relation labels. Therefore, an it-
erative updating approach, which progressively up-
dates the tree structure and the labeling based on the
current estimation, may push the final results toward
this idealized end.

Our future work will be to fully implement an
end-to-end discourse parser using our rich linguis-
tic features, and focus on improving performance on
cross-sentence instances.

4We use accuracy instead of MAFS as the evaluation metric
on the training data because it is the metric that the training
procedure is optimized toward.
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