Extending the Entity-based Coherence Model with Multiple Ranks

Vanessa Wei Feng and Graeme Hirst

Department of Computer Science, University of Toronto, Canada

1. Objective

- Extend Barzilay and Lapata (2008)'s entity-based coherence model by learning from more fine-grained coherence preferences.
- Assign multiple ranks to a set of permutations (not just the original pairwise rankings).

4. Multiple Ranks Assignment

Dissimilarity metrics

Reference ordering: $\sigma = (1, 2, ..., N)$; test ordering: $\pi = (o_1, o_2, ..., o_N)$.

- Kendall's τ (Lapata, 2006): measures the disagreement between π and σ in terms of m, the number of swaps of adjacent sentences to convert π into σ.
- Study the effect of the permutations used in training, and the effect of the coreference component used in entity extraction.
- Evaluate with sentence ordering and summary coherence rating, compared to B&L's original model.

2. Entity-based Local Coherence

Entity-grid representation for a document d

- Entity extraction options: Coreference resolution or not.
- Represent document as vector $\Phi(d) = (p_1(d), p_2(d), ..., p_m(d))$. p_t : proportions in text of each possible sequence t.

- Average continuity (AC) (Bollegala et al., 2006): estimates the quality of σ by the number of correctly arranged continuous sent-ences, compared to π .
- Edit distance (ED): the minimum number of edits (insertions, deletions, and substitutions) needed to convert π into σ .

Rank assignment

Two options for assigning ranks to the permutations:

- **Raw**: rank the permutations by their dissimilarity scores.
- Stratified: C (3 to 6) ranks are assigned to the permutations according to their raw dissimilarity scores.

5. Data

Sentence ordering

• Two datasets:

Earthquakes: pronominal realization of entities. Accidents: string repetition of entities.

Training and testing:

Summary coherence rating

- Dataset: MUC 2003 summaries (16 clusters, 5 systems).
- Training: 144 pairwise rankings.
 Testing:

<u>Same</u>: 80 pairwise rankings among summaries within the same cluster. <u>Full</u>: 1520 pairwise rankings.

3. Experimental Setup

In the original model

Sentence ordering task

- Scramble sentences of text to produce random permutations.
- Permutations are considered to be less coherent than their source document.
- Training and testing on the pairwise preferences between an original document and its permutations.

Summary coherence rating task

- System-generated and human-composed summaries, rated by human judges for coherence.
- Training and testing on the pairwise preferences between summaries generated from the same input cluster.

In our extension

Sentence ordering task

 Assign multiple ranks to permutations, indicating the dissimilarity between their sentence orders and the original. each with 100 texts and up to 20 permutations.

6. Results

Sentence ordering

Results: We show the model configurations with the best accuracies.

	E	art	hquakes	S	Accidents				Multiple fective	
Perms	Metric	С	F&H	B&L	Metric	С	F&H	B&L	when t	
Condition: full coreference resolution with oracular information										
PS_{BL}	ED	3	86.8	85.3	AC	3	83.3	83.2	> Differe	
PS_M	ED	N	87.9 *	85.3	ED	4	86.3 *	81.7	two da	
Condition: full coreference resolution without oracular information										
PS_{BL}	ED	4	77.4 *	71.7	AC	3	74.5	73.8	good o	
PS_M	τ	3	55.9	49.2	ED	5	52.3	53.2	trained	
Condition: no coreference resolution										
PS_{BL}	τ	4	82.8	83.7	AC	3	84.2 **	80.1		
PS_M	ED	5	86.7**	82.6	AC	N	86.6**	77.5		

Multiple ranking is effective in improving accuracies, especially when trained on the more realistic permutations PS_M .

- Different influence on two datasets when trained on PS_{BL}.
 This condition is not a good option when
- good option when trained on PS_M .

- Also train on the pairwise preferences among the permutations.
- Experiment with two sets of permutations:
 PS_{BL} (evenly distributed) and *PS_M* (favoring swapping near sentences).

Summary coherence rating task

• Automatically assign scores to system-generated summaries, by computing the dissimilarity between their (rough) sentence orders and the one in the reference summary.

Acknowledgement: This work was financially supported by the Natural Sciences and Engineering
 Research Council of Canada and by the University of Toronto.

Significantly better than B&L: * (p < .05), ** (p < .01). C=N: using raw option for rank assignment.

Summary coherence rating

Rough sentence orders: via simple sentence alignment.

Entities	Metric	Same	Full	
	AC	82.5	72.6 *	
Coreference	ED	81.3	73.0**	
resolution	B&L	78.8	70.9	
No	AC	76.3	72.0	
coreference	ED	78.8	71.7	
resolution	B&L	80.8	72.3	

Unsupervised score assignment is competitive with B&L's model, which requires human annotations.

 Coreference resolution is crucial to *Earthquakes*.
 Consistently outperforms B&L's model by a large margin.

References

- Regina Barzilay and Mirella Lapata. 2008. Modeling local coherence: an entity-based approach. *Computational Linguistics*, 34(1):1-34.
- Danushka Bollegala, Naoaki
 Okazaki, and Mitsuru Ishizuka.
 2006. A bottom-up approach to sentence ordering for multidocument summarization. In *Proceedings COLING/ACL 2006*, pages 385-392.
- Mirella Lapata. 2006. Automatic evaluation of information ordering: Kendall's tau. *Computational Linguistics*, 32(4):471-484.