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Letter-substitution ciphers encode a document from a known or hypothesized language

into an unknown writing system or an unknown encoding of a known writing system.

The process of solving these ciphers is a problem that can occur in a number of practical

applications, such as in the problem of determining the encodings of electronic documents

in which the language is known, but the encoding standard is not. It has also been used

in OCR applications.

In this paper, we introduce a novel method for deciphering letter-substitution ciphers.

We do this by formulating a variant of the Viterbi algorithm for use as an A* heuristic

over partial solutions of a given cipher. This heuristic can then be used as a guide in an

A* search for the correct solution. We give an overview of the classical Viterbi and A*

search algorithms, go on to describe of our proposed algorithm, and prove its correctness.

We then test our algorithm on a selection of ciphers formed from Wikipedia articles,

and show that our algorithm has the potential to be a viable, practical method for

efficiently solving decipherment problems. We also find, however, that it does have a

number of shortcomings, most notably a high variation in running time between similar

ciphers. In response to this, we describe potential sources of information to offset this

variability and use this information to improve our original algorithm.

We test this improved algorithm on both the original ciphers and a selection of newly

collected ciphers and find an average improvement in time and an across-the-board im-
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provement in variability. We conclude that we have successfully addressed the issue of

high variability found in our original algorithm. The improved algorithm proves to be

highly effective in the task of solving letter-substitution decipherment problems.
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Chapter 1

Introduction

Letter-substitution ciphers encode a document from a known language into an unknown

writing system or an unknown encoding of a known writing system. By a writing system,

we mean a symbolic representation of a human language, and we think of it as being

distinct from the language itself. For example, a human language like Hindi can be

written in the English alphabet, in the Devanagari script, or encoded electronically using

a standard like Unicode. In each of these cases, the underlying language is the same, but

the representation, or the writing system, changes.

The problem that we would like to address is that of automatically learning to convert

from one writing system to another, even when the relationship between the encodings

is not known. More specifically, we will approach this problem with the assumption that

the relationship between encodings is one to one: there is a mapping from every character

type in one encoding to a unique character type in the other.

This problem has practical significance in a number of areas, such as in reading

electronic documents that may use one of many different standards to encode text. While

this is not a problem in languages like English and Chinese, which have a small set of

well-known standard encodings such as ASCII, Big5, and Unicode, there are languages

such as Hindi in which nonstandard encodings are common. In these languages, we
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Chapter 1. Introduction 2

would like to be able to automatically retrieve and display the information in electronic

documents which use unknown encodings when we find them. We also want to use these

documents in information retrieval and data mining, in which case it is important to be

able to read through them automatically, without resorting to a human annotator. The

holy grail in this area would be an application to archaeological decipherment, in which

the underlying language’s identity is only hypothesized, and must be tested.

It should be noted that this problem is cosmetically related to the “L2P” (letter-to-

phoneme) mapping problem of text-to-speech synthesis. Both problems feature a promi-

nent constraint-based approach, but the constraints in L2P are very different: two differ-

ent instances of the same written letter may legitimately map to two different phonemes.

This is not the case in letter-substitution maps.

The purpose of this paper, then, is to simplify the problem of reading documents

in unknown encodings by presenting a new algorithm to be used in their decipherment.

Our algorithm operates by running a search over the n-gram probabilities of possible

solutions to the cipher, using a generalization of the Viterbi algorithm that is wrapped

in an A* search, which determines at each step which partial solutions to expand. It

is guaranteed to converge on the language-model-optimal solution, and does not require

restarts or risk falling into local optima. We specifically consider the problem of finding

decodings of electronic documents drawn from the Internet, and we test our algorithm

on ciphers drawn from randomly selected pages of Wikipedia. Our testing indicates that

our algorithm is effective in this domain.



Chapter 2

Terminology

Substitution ciphers are ciphers that are defined by some permutation of a plaintext

alphabet. Every character of a plaintext string is consistently mapped to another char-

acter in the output string using this permutation. For example, if we took the string

“hello world” to be the plaintext, then the string “ifmmp xpsme” would be a cipher that

maps e to f , l to m, and so on. It is easy to extend this kind of cipher so that the plain-

text alphabet is different from the ciphertext alphabet, but still stands in a one-to-one

correspondence to it. Given a ciphertext C, we say that the set of characters used in

C is the ciphertext alphabet ΣC , and that its size is nC . Similarly, the entire possible

plaintext alphabet is ΣP , and its size is nP . Since nC is the number of letters actually

used in the cipher, rather than the entire alphabet it is sampled from, we may find that

nC < nP even when the two alphabets are the same. We refer to the length of the

cipher string C as len(C). In the above example, ΣP is { , a, . . . , z} and nP = 27, while

ΣC = { , e, f, i, m, p, s, x}, len(C) = 11, and nC = 8.

Given the ciphertext C, we say that a partial solution of size k is a map σ = {p1 :

c1, . . . , pk :ck}, where c1, . . . , ck ∈ ΣC and are distinct, and p1, . . . , pk ∈ ΣP and are

distinct, and where k ≤ nC . If for a partial solution σ′, we have that σ ⊂ σ′, then we

say that σ′ extends σ. If the size of σ′ is k + 1 and σ is size k, we say that σ′ is an
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Chapter 2. Terminology 4

immediate extension of σ. A full solution is a partial solution of size nC . In the above

example, σ1 = { : , d:e} would be a partial solution of size 2, and σ2 = { : , d:e, g:m}

would be a partial solution of size 3 that immediately extends σ1. A partial solution

σT{ : , d:e, e:f, h:i, l:m, o:p, r:s, w:x} would be both a full solution and the correct one.

The full solution σT extends σ1 but not σ2.

The plaintext for a cipher C can be found by searching over all of the length len(C)

strings, which are treated as the outputs of different character mappings from C. A

string S that results from such a mapping is consistent with a partial solution σ iff, for

every pi :ci ∈ σ, the character positions of C that map to pi are exactly the character

positions with ci in C.

In our above example, we had C =“ifmmp xpsme”, in which case we had len(C) = 11.

So mappings from C to “hhhhh hhhhh” or “ hhhhhhhhhh” would be consistent with a

partial solution of size 0, while “hhhhh hhhhn” would be consistent with the size 2 partial

solution σ = { : , n:e}.

In this model, every possible full solution to a cipher C will produce a plaintext string

with some associated language model probability, and we will consider the best possible

solution to be the one that gives the highest probability. For the sake of concreteness, we

will assume here that the language model is a character-level trigram model, and that it

is found by counting the letters in a corpus such as the Penn Treebank. When referring

to the actual probabilities of plaintext sequences, we will assume the probabilities of

unigram, bigram, and trigram sequences are known. That is, for all plaintext letters

p1, p2, p3, we assume the probabilities P (p1), P (p2|p1), and P (p3|p1p2) are known.



Chapter 3

Literature Review

It may seem at first that automatically decoding (as opposed to deciphering) a document

is a simple matter, since a manual approach has been known for a long time. That is,

problems of this sort can be manually solved by recording the unigram frequencies of the

characters in the cipher and comparing them to the frequencies given in a language model.

However, studies have shown that simple algorithms of this sort do not always produce

optimal solutions (Bauer, 2007). The reason for this is that the unigram frequencies

taken from the cipher message often are different from those of the language model. If

the text from which a language model is trained is taken from a different genre than the

plaintext of a cipher, for example, then frequency counts may be misleading. People who

solve ciphers manually using unigram frequency counting can succeed because they have

access to detailed linguistic knowledge that can be used to compensate for differences in

frequency. The perceived simplicity of the problem, however, has meant that efforts to

solve it have not been particularly common.

The first major effort to understand its computational properties was presented by

Peleg and Rosenfeld (1979). In this paper, the solution to a cipher is found by using

a graph relaxation method. That is, the algorithm operates by creating a hypergraph

for the cipher (a hypergraph is a graph in which the edges may connect more than two
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Chapter 3. Literature Review 6

vertexes). The nodes of the hypergraph are the ciphertext letters, and edges are the

3-tuples of the trigrams in the cipher. Each node representing a ciphertext letter is given

a probability distribution determining which plaintext letters it can map to, and these

probability distributions are tightened to a full solution through an iterative Bayesian

method that relates the probability distribution on the nodes to the trigram probabilities

in the cipher. Unfortunately, no guarantees of convergence are given for this method.

Since then, several different approaches to this problem have been suggested. Hart

(1994) gives an approach that uses word count frequencies to approximate the solution.

This is done by assigning a score of 10−2 to the 135 most commonly occurring words in

English, and a score of 10−6 to all other words. Solutions to the cipher are grown by

attempting to map the ciphertext words to the high-probability words, subject to the

constraint that every cipher symbol type maps to a unique plaintext symbol type. A

solution is considered optimal if it maximizes the number of high-probability words in

the plain text. This approach can have a large search space, and the presence of out-of-

vocabulary words can limit the applicability of pruning. Moreover, the ciphertext must

be broken into words in order for it to be used in this method. Clearly, if the encoding

of the language does not make word endings clear, this approach will fail.

Another more recent decipherment algorithm is given by Olson (2007). This approach

also starts by breaking the cipher up into words, although it is admitted in the paper

that the locations of the word endings may have to be guessed. The algorithm works by

performing a depth-first search over the words in the cipher. A ciphertext word is picked

at random, and it is matched to all dictionary words that could be the related plaintext.

In the example given in Chapter 2, the ciphertext “ifmmp” might map to “hello”, but

it could also map to “broom”. Every such possibility becomes a different branch of the

search tree. Every possible mapping fixes a number of cipher letters (here, i, f, m and

p), and these constraints are sent to the remaining words. Another word is then chosen

at random and the process is repeated, with the extra constraints added. Not every word
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in the cipher is expected to be in the vocabulary. This approach, like the one described

by Hart (1994), has the limitation that the word endings in the cipher must be explicitly

known in order for the algorithm to succeed. Moreover, the presence of out-of-vocabulary

words can have a strong influence on the efficiency of the search. If the first word chosen

is not in the dictionary, for example, any attempt to match it to a dictionary word will

lead to a dead end. The search will spend much of its time going through these dead

ends before it starts down the correct search branch.

A more character-driven approach is discussed by Jakobsen (1995), who gives an

algorithm that attempts to find an optimal solution to a cipher in terms of its trigram

frequencies. It starts by guessing at a solution and determining its trigram probability.

The solution is then iteratively improved by swapping letters in the mapping until a

locally maximum probability is reached. The solution at this point is returned as the

optimum. It can be seen that this algorithm is capable of getting trapped in local maxima,

will require random restarts, and even then cannot guarantee a globally optimal solution.

Genetic programming methods have also been applied to this problem. In Gester

(2003), a number of different methods for combining full solutions to a cipher are experi-

mentally tested, and are found to be ineffective. The reason for this likely stems from the

fact that a search space made up of only the full solutions to a cipher does not readily

admit a structure that is smooth enough to ensure that a single global minimum can

be found through descent methods — as in Jakobsen’s algorithm, there are many local

maxima and minima for the problem. Moreover, it is difficult to determine a method

for combining two “good” solutions (i.e., two solutions that have many ciphertext letters

guessed correctly) into a third solution in such a way that the good letter choices are

preserved.

There has been a series of papers that have treated this task as an Expectation

and Maximization problem (Knight et al., 2006; Knight, 1999). That is, the algorithms

proposed by these papers do not treat the solutions of ciphers as hard assignments, but
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as probability distributions over the different plaintext assignments for each ciphertext

symbol type. An initial uniform distribution is assumed, and is iteratively updated

in expectation and maximization phases. In the expectation phase, the sum of the

probabilities that different plaintext solutions could generate the cipher is calculated

using a forward and backward Viterbi pass. In the maximization step, the posterior

of solution probabilities is found using the plaintext probabilities from the expectation

phase. Should the algorithm converge, the probabilistic solution is taken as the optimal

one, and the quality of the solution is taken as the number of errors induced in the

resulting plaintext (as opposed to the number of incorrectly assigned ciphertext symbol

types). Unfortunately, Knight’s algorithms are highly dependent on their initial states,

and require a number of restarts in order to find the globally optimal solution.

A further contribution was made by Ravi and Knight (2008), who treat the decipher-

ment of letter-substitution ciphers as an integer programming problem. Clever though

this constraint-based encoding is, their paper does not quantify the massive running

times required to decode even very short documents with this sort of approach. Such

inefficiency indicates that integer programming may simply be the wrong tool for the

job, possibly because language model probabilities computed from empirical data are

not smoothly distributed enough over the space in which a cutting-plane method would

attempt to compute a linear relaxation of this problem. Ravi and Knight (2008) also

seem to believe that short cipher texts are somehow inherently more difficult to solve than

long cipher texts. This difference in difficulty, while real, is not inherent, but rather an

artifact of the character-level n-gram language models that they (and we) use, in which

preponderant evidence of differences in short character sequences is necessary for the

model to clearly favour one letter-substitution mapping over another. Uniform character

models equivocate regardless of the length of the cipher, and sharp character models with

many zeros can quickly converge even on short ciphers of only a few characters.

Applications of decipherment are also explored by Nagy et al. (1987), who use it in
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the context of optical character recognition (OCR), as well as by Snyder et al. (2010),

who use it in the context of lost language decipherment.



Chapter 4

The Algorithm

We have approached the problem of solving monoalphabetic ciphers with the translit-

eration of electronic documents in mind. Specifically, we have been interested in the

transliteration of websites that use unknown encodings, and we have constructed our

algorithm around this application. Naturally, it would be helpful to be able to use a

known encoding for a document if one exists, without having to resort to the longer

process of decipherment. We must therefore determine if a document with no known

encoding specified actually uses an unknown encoding, or simply mislabels a known one.

This is not problematic, however, since the number of known encodings is generally fairly

small, and so the possible known encodings can be individually tested. We can reason-

ably assume that the trigram probability for a document will be very low if the encoding

is not correct, and so we can determine if a known encoding for a document is likely by

comparing the probability of the document under that encoding with the probability of

a random text of a similar length from the target language. The problem description is

as follows:

10
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Problem: We are given a website that we have split up into characters to give us a ci-

phertext C. It is assumed that the language of the text from which the cipher is derived

is known, but the encoding is unknown. Given an appropriate language model, we would

like to infer the correct encoding. We will assume this to produce the maximum trigram

probability given the document and language model.

According to our algorithm, the best possible solution for the ciphertext C is found

by conducting a search over its partial solutions. The search is conducted over an implicit

directed graph structure whose nodes are a subset of the partial solutions. For any two

partial solutions σ and σ′ in the graph, the graph has the edge (σ, σ′) if and only if σ′ is an

immediate extension of σ. The root node of the graph is searched first, and at every step,

the unsearched neighbors of the searched nodes are listed. For all of these unsearched

partial solutions, an estimate is kept of the best probability of any full solution extending

it. This estimate is used to order the partial solutions, and the most promising one, as

guessed from the estimates, is then searched. We will find that our search is a valid

A* search, and so it is both complete and correct over the full solutions. With this in

mind, we will give an overview of the A* algorithm in Section 4.1. Our estimate for the

probability of the best solution extending a given partial solution will be found using a

specialization of the Viterbi algorithm, and so we will follow our discussion of the A*

search with an overview of the Viterbi algorithm in Section 4.2. Finally, the details of

how we modify these algorithms in order to search the partial solutions will be given in

Section 4.3.
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4.1 A Review of the A* Search Algorithm

The A* search, which was introduced by Hart et al. (1968), is a search algorithm for

graphs. Dechter and Pearl (1985) show that this search algorithm allows us, given a

directed graph with distinguished source and target nodes and an edge cost function,

to find the least-cost path from the source to the target. In this regard, the A* search

algorithm is similar in nature to the Breadth-First Search algorithm, but it allows the

search order of the nodes to be modified according to some guess, or heuristic, as to the

remaining cost from any node to the sink. The specific problem definition is as follows.

Problem: We are given a (directed) graph Γ = (V,E) and two distinguished nodes

s, t ∈ V . For every edge e ∈ E we are given a nonnegative cost c(e), and we are given a

nonnegative function h : V → R≥0 such that for any vertexes u, v ∈ V :

• h(u) never overestimates the cost of the best path from u to t.

• h(u) is monotonic. That is, if uv is an edge in E, then h(u) ≤ c(uv) + h(v).

The function h is called a consistent heuristic if it satisfies these two criteria. We would

like to find a path P from s to t such that the sum
∑

v∈P c(v) over the edges v in P

is minimal. If no path from s to t exists, the algorithm should return “Solution Infeasible”.

If we were to run a Breadth-First Search on the graph Γ , we would iteratively calculate

the value g(v) for every node v reachable from s, where g(v) is the value of the lowest-

cost path from s to v. That is, if P is the set of edges on this lowest cost path, then

g(v) =
∑

p∈P c(p). The A* algorithm works in a similar manner, except the value h(v)

is included in the calculation. Whereas the Breadth-First Search algorithm orders the

nodes by g(v), the A* search algorithm orders the nodes by the value of the function

f(v) = g(v) + h(v). Thus, f(v) gives the cost of the best path to v plus an estimate of

the remaining cost for the best path from v to t. The exact form of the search is given
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in Algorithm 4.1. It has been shown by Dechter and Pearl (1985) that so long as the

heuristic h is consistent, the A* search is both optimal and complete.

As in the Breadth-First Search algorithm, we keep track of both the nodes that have

been searched and the neighbors of nodes that have been searched when running the A*

search. Because we use a priority queue to order the nodes that have yet to be searched,

we store the unsearched neighbors of the searched nodes in the set “ENQUEUED”, and

because we expand the list of a node’s neighbors when we search it, we store the searched

nodes in the set “EXPANDED”.

To show why the A* search can be more useful than a Breadth-First Search, consider

this example: We have a map showing several cities and the roads between them. We

might be in one city on the map (say, Toronto), and desire to travel by road to another

(say, Vancouver). In this case, the graph Γ could be similar to that shown in Figure 4.1.

Its nodes would be the cities, and its edges would be the roads. Now, we can find the

shortest path from Toronto to Vancouver in this graph using the Breadth-First Search

algorithm, but the search itself may not be as efficient as we would like. For example,

when expanding the immediate neighbors of Toronto in the graph, we may find them to

be Montreal and Winnipeg. If we use the Breadth-First Search, we may explore Montreal

first, even though it is clear that Winnipeg is closer to the target, and therefore likely

to give a better overall path. On the other hand, it can be shown that the distance to

the target city is an admissible heuristic. If we use this heuristic as described in the A*

algorithm, we would immediately choose to search Winnipeg as opposed to Montreal,

and would likely manage to avoid altogether the burden of searching the longer paths to

Vancouver that go through Montreal.

Finally, we would like to draw attention to the fact that the efficiency of the A*

algorithm can vary greatly according to the heuristic used. It can be seen that the trivial

heuristic (h(v) = 0 for all v ∈ V ) is admissible, and if used, will mimic a normal Breadth-

First Search algorithm. If the heuristic can somehow tell us the actual cost of the best
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Algorithm 4.1 The A* Search Algorithm

Input: A (directed) graph Γ = (V,E), a pair of distinguished nodes s and t, a nonneg-

ative edge cost function c : E → R≥0, and an admissible heuristic h : V → R≥0.

The function call is of the form: A*Search(Γ, s, t, c, h).

Output: An optimal path from s to t, and its cost.

1: Set EXPANDED = ∅.

2: Set ENQUEUED = {s}.

3: for v ∈ V do

4: Set g(v) =∞.

5: Set π(v) = ∅

6: Set g(s) = 0.

7: while ENQUEUED 6= ∅ do

8: Find v ∈ ENQUEUED such that f(v) = g(v) + h(v) is minimal.

9: Set ENQUEUED = ENQUEUED \{v}.

10: Set EXPANDED = EXPANDED ∪{v}.

11: if v = t then

12: Return g(t), P = {t, π(t), π(π(t)), . . . , s}.

13: else

14: for all w ∈ V such that vw ∈ E and w /∈ EXPANDED do

15: if g(w) > g(v) + c(vw) then

16: Set g(w) = g(v) + c(vw).

17: Set π(w) = v.

18: Return “No Solution” .
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Toronto

Montreal

Winnipeg
Vancouver

Figure 4.1: When searching for a route from Toronto to Vancouver, it is helpful to search

Winnipeg before Montreal, even though Montreal is closer.

path from any node v to t, then the A* algorithm will search only the nodes that are

actually on a best path from s to t. In a similar sense, a heuristic that is close to the

actual best cost will generally be more efficient than one that is not, and so tightening a

heuristic to make it closer to the actual best cost can improve the overall performance of a

search. This will be relevant in Chapter 6 when we show how our algorithm is improved.

4.2 A Review of the Viterbi Algorithm

The Viterbi algorithm, which was introduced by Viterbi (1967), is designed to allow a

source signal, and its probability to be efficiently inferred after it has passed through a

noisy channel. That is, we assume a source signal to be represented as a string generated

by a known probability distribution, and that this signal has passed through a channel

that changes its characters according to another known probability distribution. If we

know the signal after it has passed through this channel, then the Viterbi algorithm

allows us to find the most probable signal to have passed into it, and its associated

probability. The algorithm is generally run using bigrams to model the source signal, but

since our specialization uses trigrams instead, the version we present here will also model

the source signal with trigrams. Moreover, we never use the actual source signal in our

work, so we only given the sections of the algorithm that give the associated probability.
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Problem: We are given a source alphabet ΣS. A string S ∈ Σ∗S, which represents a

source signal, has been generated by a given trigram probability model over ΣS. That is,

for all characters s1, s2, s3 ∈ ΣS, the unigram probability P (s1), the bigram probability

P (s2|s1), and the trigram probability P (s3|s1s2) are known. The string probability of the

whole string S is denoted by P (S). We are also given an output probability distribution:

every s ∈ ΣS will be read as a letter c in an alphabet ΣC . This letter c is not fixed, but

is chosen at random for every instance of s in S according to a probability distribution

β(c|s). Every letter in the string S has been transformed in this manner, resulting in a

string C ∈ Σ∗C . We assume that the output transformations are independent, and so we

will write β(c0c1 . . . cn|s0s1 . . . sn) = β(c0|s0)β(c1|s1) . . . β(cn|sn).

Given that we know the output string C and the probability distributions P and β,

we would like to infer the probability P (S)× β(S) of the most likely source string S.

Clearly, the brute force method of finding this probability will require far too much

time for it to be feasible for all but the shortest strings. This problem can be solved,

however, with dynamic programming through the use of the Viterbi algorithm.

The idea behind this algorithm is that we find the probability of the most likely string

S by filling in two tables G and B whose columns correspond to the indices of the string

C and whose rows are indexed by the source alphabet ΣS. For every index (x, y), we

consider all strings of length x+ 1 in ΣS that end in y. The probability of the string that

gives the highest probability of producing C[0]C[1] . . . C[x− 1] will be stored in the cell

at G(x, y). For the sake of our calculations, we will also make use of a backpointer in our

table: the identity of the second-last letter in the above most likely string will be stored

in B(x, y). We note that these back pointers are actually needed for the calculations,

and are not used to reconstruct the string S.

Filling in these tables is a very straightforward matter. The first column can be filled

in by recording the unigram frequency of each source letter times its output probability,

since there is only one string to consider. The backpointers in this column are all null.
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To fill in the second column, the bigram frequencies are considered. For the in-

dex (1, s), we look at every possible bigram s′s. We find the s′ such that G(0, s′) ×

P (s|s′)× β(C[1]|s) is maximized, and we put the resulting probability into G(1, s). We

set B(1, s) = s′.

The third column is filled in a similar manner, but using trigrams. At the index (2, s),

we consider every possible trigram s1s2s. We find the s1, s2 such that the probability

G(0, s1) × P (s2|s1) × β(C[1]|s2) × P (s|s1s2) × β(C[2]|s) is maximized. We place the

resulting probability into G(2, s), and s2 into B(2, s). Note that we do not yet make use

of the value at G(1, s2). This is because the optimal value for s1 might not be equal to

the letter at B(1, s2). If we tried to use the value of G(1, s2) in this location, however,

s1 would have to be fixed given s2 for the calculation to be correct.

Finally, every column after the third can be filled using the previous two columns. At

the index (i, s), i ≥ 3, we consider every possible trigram s1s2s. We find the s1, s2 such

that the probability G(i−2, s1)×P (s2|B(i−2, s1)s1)×β(C[1]|s2)×P (s|s1s2)×β(C[2]|s)

is maximized. We place the resulting probability into G(i, s), and s2 into B(i, s). This

is the point at which the backpointers are really necessary. If we were to use bigrams

in the calculation in the way that we do in column three, the probability that we would

store in the cell G(i, s) would no longer be an accurate trigram probability.

Finally, we need to find the probability P (S)β(S) of the most likely string S. Once

we are finished filling the table, we simply find the highest probability in the last column.

The Viterbi algorithm using trigrams is given in Algorithm 4.2. This algorithm is in

some ways very close to what we need in order to solve our ciphers, since we can treat

the encipherment process as a transformation of a source string in which the output

probability β(c|s) is 1 if s is the plaintext of c, and 0 otherwise. Unfortunately, the

distribution β is unknown, and so we will have modify the algorithm for it to work.
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Algorithm 4.2 The Viterbi Algorithm

Input: The string C.

The function call is of the form: Vit(C).

Output: Probability P (S)β(S) of the most likely string S to have generated C.

1: Create two len(C)× |ΣS| sized tables G and B.

2: Initialize G, B to 0.

3: for s ∈ ΣS do

4: G(0, s) = P (s)× β(C[0]|s).

5: for s ∈ ΣS do

6: G(1, s) = maxs′∈ΣS
(G(0, s′)× P (s|s′)× β(C[1]|s)).

7: B(1, s) = argmaxs′∈ΣS
(G(0, s′)× P (s|s′)× β(C[1]|s)).

8: for s ∈ ΣS do

9: G(2, s) = maxs1, s2∈ΣS
(G(0, s1)× P (s2|s1)× β(C[1]|s2)× P (s|s1s2)× β(C[2]|s)).

10: B(2, s) = argmaxs1, s2∈ΣS
(G(0, s1)×P (s2|s1)×β(C[1]|s2)×P (s|s1s2)×β(C[2]|s)).

11: for i = 3 to len(C)− 1 do

12: for s ∈ ΣS do

13: G(i, s) = maxs1, s2∈ΣS
(G(i−2, s1)×P (s2|B(i−2, s1)s1)×β(C[1]|s2)×P (s|s1s2)×

β(C[2]|s)).

14: B(i, s) = argmaxs1, s2∈ΣS
(G(i − 2, s1) × P (s2|B(i − 2, s1)s1) × β(C[1]|s2) ×

P (s|s1s2)× β(C[2]|s)).

15: Return maxs∈ΣS
G(len(C)− 1, s).
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4.3 A Search over the Partial Solutions

Having reviewed the A* search and Viterbi algorithms, we can return to the problem of

efficiently solving letter substitution ciphers. We assume that we are given a cipher C

and a language model. We conduct our search by running an A* search over a subset of

the partial solutions of C. The subset of the partial solutions that we use is determined

as follows: We fix a total order for the different letters in the ciphertext alphabet ΣC . We

will consider the solutions that fix these letters in order. Formally, a partial solution σ

of size n will be in the search graph iff the image of σ is precisely the first n letters of ΣC

according to this order. For example, if the order of ΣC were ≤ a ≤ g ≤ y ≤ . . . ≤ b,

then σ = { : , d:a, e:g} would be on the search graph, since the image of σ in ΣC (i.e.,

{ , a, g}) is exactly the set of the first three letters in the order. On the other hand,

σ′ = { : , d:r} would not be on the search graph, since the image of σ′, i.e., { , r}, is not

the set of the first two letters in the order.

We create a graph out of this subset of vertexes by placing, for any partial solutions

σ, σ′, an edge from σ to σ′ iff σ′ is an immediate extension of σ. Each of these edges is

given a cost of 0. We add to the graph a target node t, and run an edge from every full

solution to it. If σ is a full solution, the cost of the edge σt is the negative log probability

of the plain text of that solution given the language model. In the most general case, we

take the source node s to be the empty solution ({}), but if we have previous knowledge

of the system we can “move up” the starting point of the search to the best partial

solution known. For example, in Chapter 5 we will find that spaces can be reliably fixed

in our ciphers, and so we will start our search from the partial solution fixing the space.

An example of the sort of graph that we consider is shown in Figure 4.2. If we were to

use the cipher from Chapter 2, that is, C =“ifmmp xpsme”, and if we were to fix the

letters from the rightmost occurrence first, then the first level of solutions that we would

consider would fix the “e”. Thus, we would search partial solutions of the form {d:e} and

{v:e}. The second level of solutions would all fix the “e” and the “m”, and so we would
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search through solutions of the form {d:e, l:m} and {v:e, d:m}. This would continue until

the full solutions were listed.

Now, if ΣC is even moderately large, this graph will clearly be too large to define

explicitly in a real-world program. We therefore only work with it implicitly by keeping

track of the partial solutions that we have searched and the edges linking out from them.

Given a suitable heuristic for this graph, then, we can run an A* search in order to

find the optimal solution. Such a heuristic can be found by firstly defining m(σ) as the

maximum over the trigram probabilities of all strings of length len(C) consistent with a

partial solution σ. This means, in particular, that we take the maximum over the set of

all strings in which the ciphertext letters not in the range of σ can be mapped to any

plaintext letter not in σ and do not even need to be consistently mapped to the same

plaintext letter in every instance. If v(σ) is this maximum, then our heuristic will be

Gmax(σ) = − log (v(σ))

Recalling the constraints given in Section 4.1, we can see that this heuristic is consis-

tent in the A* sense: v(σ) is an upper bound for the trigram probability of the plaintext

generated by any full solution extending σ, since each such plaintext is clearly a string

consistent with σ. Therefore, Gmax(σ) is a lower bound for the negative log of these

probabilities, which are precisely the possible costs needed to reach t from σ on our

graph. We can conclude that Gmax(σ) never overestimates the full cost needed to reach

t. Furthermore, if σ′ is any immediate extension of σ, it is also clear that the set of

strings consistent with σ′ is a subset of the set of strings consistent with σ. The value of

v(σ′) is then not greater than v(σ), and so Gmax, in turn, is a nondecreasing heuristic.

Given this heuristic, then, the search portion of our algorithm is an A* search over

our graph, and is depicted in Algorithm 4.3. In the algorithm shown, we ignore zero-

probability partial solutions rather than place them onto the queue. The order by which

we add the letters of ΣC to partial solutions is the order of the distinct ciphertext letters

in right-to-left order of their final occurrence in C. We denote the order of the letters
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{} No letters fixed

{p1:e} {p2:e} . . . {pnP−1:e} {pnP :E} {e} fixed

. . . {e, m} fixed

...
...

...

. . . ΣC fixed

t Target node

Figure 4.2: We form a graph over a subset of the partial solutions to the cipher

“ifmmp xpsme” by fixing each ciphertext letter according to the rightmost first order.

The edges of the graph connect any partial solution to any of its immediate extensions.
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with subscripts so that c1 ≤ c2 ≤ . . . cnC
. Other orderings for the alphabet ΣC , such as

most frequent first, are also possible, and are discussed later.

Due to the fact that an A* search with a consistent heuristic gives an optimal solution,

it can be seen that our search will give us the full solution to the cipher that has the

highest trigram probability, which is what we desire. However, we must still be able

to find, for any partial solution σ, the value Gmax(σ). Naturally, a straightforward

approach to this task will be inefficient. In general, the number of strings that we must

consider to find Gmax(σ) will be exponential in the length of the cipher, and so we cannot

consider every one separately. However, the probability of each string of length len(C)

is a straightforward function of its prefixes, and these prefixes are shared across many

strings. In fact, it can be seen that, aside from the issue of ensuring that the strings

considered are consistent with σ, this problem is essentially the same as that which is

solved by the Viterbi algorithm. It is therefore reasonable to modify the Viterbi algorithm

in a way that will allow us to solve this more constrained problem.

We do this by allowing the Viterbi algorithm to ‘pinch’ the probabilities around the

letters in σ to ensure consistency. That is, we allow the Viterbi algorithm to run normally,

except for the fact that if p:c is in our partial solution σ, then we will force the output

probability β(c|p) = 1 and force β(c|p′) = β(c′|c) = 0 whenever c′ 6= c, p′ 6= p. All other

output probabilities are assumed to be uniform, and in order to give the desired trigram

probability at the end of the calculation, are set to 1. Due to the fact that the output

score β(c|p) is no longer technically a probability distribution under these calculations,

and due to the fact that it takes the value of either 0 or 1, we do not explicitly refer to

β in our specialized Viterbi algorithm. It can be seen that this specialization does not

render the ability of the algorithm to return the highest probability string invalid, and so

it will return the maximum probability v(σ) over all strings of length len(C) which are

consistent with a partial solution σ. From that point, the value Gmax(σ) = − log(v(σ))

can easily be calculated. In fact, in the practical algorithm, the negative log domain
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values are actually used throughout the calculation so as to maximize the numerical

stability of the operations, although the actual steps used are the negative log domain

counterparts of the regular steps.

Our calculation of Gmax(σ) has another difference from its Viterbi predecessor. As can

be seen in Algorithm 4.3, Line 15, we do not, in general, directly calculate Gmax(σ) when

we are actually searching the node associated with σ. Rather, we calculate Gmax for the

neighbors immediately reachable from it, which correspond to a subset of the immediate

extensions of σ. We do this because, when conducting an A* search over a graph, we

expand a node by finding the cost of its neighbors, not of the node itself. While the

ciphertext letter to be fixed in this calculation (denoted cs+1 in Algorithm 4.3) is given,

the calculation must be performed for each unfixed plaintext letter p. Rather than run

each calculation separately, we find them in parallel in a single function call. This function

call is denoted SV it(σ, cs+1). A call to this function will return a len(C)×nP ×nP table

Gbig. The value Gmax(σ ∪ {p : cs+1}) referenced in Algorithm 4.3 is found by taking

maxl∈ΣP
(Gbig(len(C)− 1, l, p)).

The function SVit(σ, c), depicted in Algorithm 4.4, uses dynamic programming to

score every immediate extension of a given partial solution in tandem, by finding, in a

manner consistent with the real Viterbi algorithm, the most probable input string given

a set of output symbols, which in this case is the cipher C. A call to SVit(σ, c) manages

the task of finding our heuristic by filling in a table Gbig such that for all 1 ≤ i ≤ len(C),

and l, k ∈ ΣP , Gbig(i, l, k) is the maximum probability over every plaintext string S for

which:

• len(S) = i,

• S[i] = l,

• for every p in the domain of σ, every 1 ≤ j ≤ i, S[j] = p iff C[j] = σ(p), and

• for every position 1 ≤ j ≤ i, S[j] = k iff C[j] = c.



Chapter 4. The Algorithm 24

The real Viterbi algorithm lacks these final two constraints, and would only store a

single cell at G(i, l). There, G is called a trellis. Our Gbig is a collection of many parallel

trellises, which we refer to as a greenhouse.

The table is completed by filling in the columns from i = 0 to len(C) in order.

For every column i, we let C[i] represent the value of C at i. We will iterate over the

values of l and over the values of k such that k : c and l :C[i] are consistent with σ.

Because we are using a trigram character model, the cells in the first and second columns

must be primed with unigram and bigram probabilities. The remaining probabilities are

calculated by searching through the cells from the previous two columns, using the entry

at the earlier column to indicate the probability of the best string up to that point, and

searching through the trigram probabilities over two additional letters. Cells that would

produce inconsistencies are left at zero, and these as well as cells that the language model

assigns zero to can only produce zero entries in later columns. This process is depicted

in Figure 4.3.

As in the real Viterbi algorithm, backpointers are necessary to reference one of the

two language model probabilities. With this in mind, we also keep reference to the

second-last letter in the optimal string ending at Gbig(i, l, k) for every l and k and for

every i ≥ 1. We refer to this letter as Bbig(i, l, k).

In order to decrease the search space, we add the further restriction that the solutions

of every three-character sequence must be consistent: if the ciphertext indicates that two

adjacent letters are the same, then only the plaintext strings that map the same letter

to each will be considered. The number of letters that are forced to be consistent is

three because consistency is enforced by removing inconsistent strings from consideration

during trigram model evaluation.

Because every partial solution is only obtained by extending a solution of size one

less, and extensions are only made in a predetermined order of cipher alphabet letters,

every partial solution is only enqueued and extended once.
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Greenhouse Array

(a) (b) (c) (d)

...

l
m

n

...

z

l w · · · y t g · · · g u

· · · e f g · · · z

Each cell in the greenhouse is indexed by a position in the cipher (denoted as i) and a
plaintext letter (denoted as l). Each cell consists of a smaller array which is indexed by
the plaintext letter k. The cells in the array give the best probabilities of any path
passing through the greenhouse cell, given that the index character of the array maps
to the character in column c, where c is the next ciphertext character to be fixed in the
solution. The probability is set to zero if no path can pass through the cell.
This is the case, for example, in (b) and (c), where the knowledge that “ ” maps to “ ”
would tell us that the cells indicated in gray are unreachable. The cell at (d) is filled
using the trigram probabilities and the probability of the path at starting at (a).

Figure 4.3: Filling the Greenhouse Table.
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SVit is highly parallelizable. The nP × nP cells of every column i do not depend on

each other — only on the cells of the previous two columns i− 1 and i− 2, as well as the

language model. In our implementation of the algorithm, we have written the underlying

program in C/C++, and we have used the CUDA library developed for NVIDIA graphics

cards in order to implement the parallel sections of the code.
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Algorithm 4.3 A* Section of the Search Algorithm

Input: The ciphertext C and (optionally) the starting partial solution σ0.

The function call is of the form: Decipher(C, [σ0])

Output: The most likely full solution σ to C.

1: if σ0 is not given as an argument then

2: σ0 = {}.

3: Order the letters c1 . . . cnC
by rightmost occurrence in C.

4: Create a priority queue Q for partial solutions, ordered by highest probability.

5: Push the starting σ0 solution onto the queue.

6: while Q is not empty do

7: Pop the best partial solution σ from Q.

8: s = |σ|.

9: if s = nC then

10: Return σ

11: else

12: Set SV = SV it(σ, cs+1)

13: for all p not in the range of σ do

14: Define Gmax(σ∪{p:cs+1}) as the heuristic plus the known cost at (σ∪{p:cs+1})

15: Set Gmax(σ ∪ {p:cs+1}) = maxl∈ΣP
(SV (len(C)− 1, l, p)).

16: if Gmax(σ ∪ {p:cs+1}) <∞ then

17: Push σ ∪ {p:cs+1} onto Q with the score Gmax(σ ∪ {p:cs+1}).

18: Return “Solution Infeasible”.
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Algorithm 4.4 Specialized Viterbi Algorithm

Input: Partial solution σ and ciphertext character c.

The function call is of the form: SV it(σ, c).

Output: Greenhouse Gbig.

1: Initialize Gbig to 0 and Bbig to null.

2: for all (l, k) such that σ ∪ {k:c, l:C[0]} is consistent do

3: Gbig(0, l, k) = P (l).

4: for all (l, k) such that σ ∪ {k:c, l:C[1]} is consistent do

5: for all j such that σ ∪ {k:c, l:C[1], j:C[0]} is consistent do

6: Gbig(1, l, k) = max(Gbig(1, l, k), Gbig(0, j, k)× P (l|j))

7: Bbig(1, l, k) = the j for which this max was found.

8: for all (l, k) such that σ ∪ {k:c, l:C[2]} is consistent do

9: for all j1, j2 such that σ ∪ {k : c, j2:C[0], j1:C[1], l:C[2]} is consistent do

10: Gbig(2, l, k) = max(Gbig(2, l, k), Gbig(0, j2, k)× P (j1|j2)× P (l|j2j1)).

11: Bbig(2, l, k) = the j1 for which this max was found.

12: for i = 3 to len(C)− 1 do

13: for all (l, k) such that σ ∪ {k:c, l:C[i]} is consistent do

14: for all j1, j2 such that σ ∪{k:c, j2 : C[i−2], j1:C[i−1], l : C[i]} is consistent do

15: Gbig(i, l, k) = max(Gbig(i, l, k), Gbig(i−2, j2, k) × P (j1|j2B(i, j2, k)) ×

P (l|j2j1)).

16: Bbig(i, l, k) = the j1 for which this max was found.

17: Return Gbig.
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Experiments, Part 1

As we have stated in Chapter 4, our algorithm has been designed with the application of

transliterating websites in mind. In order to gain realistic test data for this application,

we have operated on the assumption that Wikipedia is a good approximation of the type

of language that will be found in most web pages. We sampled a sequence of English-

language articles from Wikipedia using their random page selector, and these were used

to create a set of reference pages. In order to minimize the common material used in

each page, only the text enclosed by the paragraph tags of the main body of the pages

was used.

A rough search over web pages has shown that a length of 1000 to 11000 characters

is a realistic length for many articles, although this can vary according to the genre of

the page. Wikipedia, for example, has entries that are one sentence in length. We have

run two groups of tests for our algorithm.

5.1 The Test Sets and Language Model

In the first set of tests, we chose the mean of the above lengths to be our sample size, and

we created and decoded 10 ciphers of this size (i.e., different texts, same size). We made

these cipher texts by concatenating the contents of randomly chosen Wikipedia pages

29
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until they contained at least 6000 characters, and then using the first 6000 characters of

the resulting files as the plaintexts of the cipher. The text length was rounded up to the

nearest word where needed.

In the second set of tests, we used a single long ciphertext, and measured the time

required for the algorithm to finish a number of prefixes of it (i.e., same text, different

sizes). The plaintext for this set of tests was developed in the same way as the first

set, and the input ciphertext lengths considered were 1000, 3500, 6000, 8500, 11000, and

13500 characters.

In all of the data considered, the frequency of spaces was far higher than that of any

other character, and so in any real application the character corresponding to the space

can likely be guessed without difficulty. The ciphers we have considered have therefore

been simplified by allowing the knowledge of which character corresponds to the space.

It appears that Ravi and Knight (2008) did this as well. We add the knowledge of which

character corresponds to a space by starting our search from the partial solution that

correctly fixes the space. Our algorithm will still work without this assumption, but

would take longer.

Our character-level language model used was developed from the first 1.5 million

characters of the Wall Street Journal section of the Penn Treebank corpus. The characters

used in the language model were the upper- and lower-case letters, spaces, and full stops;

other characters were skipped when counting the frequencies. Furthermore, the number

of sequential spaces allowed was limited to one in order to maximize context and to

eliminate any long stretches of white space. In the event that a trigram or bigram was

found in the plaintext that was not counted in the language model, add-one smoothing

was used. As discussed previously, the space character is assumed to be known.
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5.2 Measurements

When testing our algorithm, we judged the time complexity of our algorithm by measur-

ing the actual time taken by the algorithm to complete its runs, as well as the number of

partial solutions placed onto the queue (“enqueued”), the number popped off the queue

(“expanded”), and the number of zero-probability partial solutions not enqueued (“ze-

ros”) during these runs. These latter numbers give us insight into the quality of trigram

probabilities as a heuristic for the A* search.

We judged the quality of the decoding by measuring the percentage of characters in the

cipher alphabet that were correctly guessed, and also the word error rate of the plaintext

generated by our solution. The second metric is useful because the frequencies of the

ciphertext characters in the cipher is not close to uniform. If a low-probability character

in the ciphertext is guessed wrongly the resulting plaintext would be more accurate than

indicated by the number of correctly guessed characters in the cipher alphabet. Counting

the actual number of word errors is meant as an estimate of how useful or readable the

plaintext will be.

We would have liked to compare our results with those of Ravi and Knight (2008),

but the method presented there was simply not feasible on texts and (case-sensitive)

alphabets of this size with the computing hardware at our disposal.

5.3 Results, Part 1

In our first set of tests, we measured the time consumption and accuracy of our algorithm

over 10 ciphers taken from random texts that were 6000 characters long. The time values

in these tables are given in the format of (H)H:MM:SS. The results from this run appear

in Table 5.1. All running times reported in this section were obtained on a computer

running Ubuntu Linux 8.04 with 50 GB of RAM and 16× 1.6 GHz CPU cores. Column-

level subcomputations in the greenhouse were dispatched to two NVIDIA Tesla S1070
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Cipher Time Enqueued Expanded Zeros Accuracy Word Error Rate

1 2:52:58 964 964 44157 100% 0%

2 0:18:16 132 132 5197 100% 0%

3 0:07:23 91 91 3080 100% 0%

4 22:58:05 6238 6238 272327 100% 0%

5 84:05:33 16678 16678 714002 100% 0%

6 7:32:37 2521 2521 114283 100% 0%

7 8:30:41 2626 2626 116392 100% 0%

8 4:49:46 1483 1482 66070 100% 0%

9 13:03:22 4814 4814 215086 100% 0%

10 1:57:05 950 950 42107 100% 0%

Table 5.1: Time consumption and accuracy on a sample of 10 6000-character texts.

GPU cards that are attached through 16-lane PCI Express adapters. Each card has 16

GB of cache memory, a 602 MHz core processor and 4× 240 shader processors operating

in parallel at 1440 MHz each.

In our second set of tests, we measured the time consumption and accuracy of our

algorithm over several prefixes of different lengths of a single 13500-character ciphertext.

The results of this run are given in Table 5.2.

The first thing to note in this data is that the accuracy of this algorithm is above 90%

for all of the test data, and 100% on all but the smallest 2 ciphers. We can also observe

that even when there are errors (e.g., in the size 1000 cipher), the word error rate is very

small. This is a Zipf’s Law effect — misclassified characters come from poorly attested

character trigrams, which are in turn found only in longer, rarer words. The overall high

accuracy is probably due to the relatively large size of the texts: as the ciphertexts get

longer, the number of solutions and the number of partial solutions that are reasonable

decrease drastically. The results do show, however, that character trigram probabilities
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Size Time Enqueued Expanded Zeros Accuracy Word Error Rate

1000 57:56:01 119759 119755 5172631 92.59% 1.89%

3500 0:52:35 615 614 26865 96.30% 0.17%

6000 0:16:31 147 147 5709 100% 0%

8500 12:45:55 1302 1302 60978 100% 0%

11000 1:28:05 210 210 8868 100% 0%

13500 1:15:19 219 219 9277 100% 0%

Table 5.2: Time consumption and accuracy on prefixes of a single 13500-character ci-

phertext.

are an effective indicator of the most likely solution, even when the language model and

test data are from very different genres (here, the Wall Street Journal and Wikipedia,

respectively). These results also show that our algorithm is effective as a way of decoding

simple ciphers.

As far as the running time of the algorithm goes, we see a substantial variance:

from a few minutes to several hours for most of the longer ciphers. Specifically, there is

substantial variability in the running times seen.

Desiring to reduce the variance of the running time, we look at the second set of

tests for possible causes. In this test set, we see a similar variation in running time.

Specifically, the length 8500 cipher generates more solutions, and runs for longer, than

the length 6000 or 11000 ones. This indicates that the length of a cipher is not the only

factor in determining its complexity. Moreover, since the ciphers are all prefixes of the

same string, the plaintext language cannot be the deciding factor either.

There is a major difference between these ciphers, however, that can explain these

differences. Recall that the algorithm fixes characters starting from the end of the cipher,

these prefixes have very different character orderings, c1, . . . , cnC
, and thus a very different

order of partial solutions. The running time of our algorithm depends very crucially on
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these initial conditions.

If we use the data of Table 5.1 as an indicator of the time and search complexity

between ciphers of the same length, then we can argue that the time required for a

cipher to run correlates very well with the number of nodes that must be searched. This

is not the case for the data of Table 5.2. Here, we see that the average time taken per

run of SV it (i.e., TIME / EXPENDED) increases with the cipher length for the ciphers

that are shorter than 11000 characters. This is naturally to be expected, since the size

of the table to be filled is a linear function of the cipher length. The time taken per run

of SV it most likely decreases for the ciphers of length 11000 and 13500 because of the

order in which the cipher letters are fixed. Fixing the ciphertext letters in an efficient

manner will allow more zero probability strings to identified as the table is filled, and

this will make the algorithm run more efficiently.

If we take this difference into account, the data also suggests that there is generally

a decrease in search complexity as the length of the cipher increases. That is, although

all of the times in Table 5.2 are within the expected variation indicated in Table 5.1, the

number of nodes searched per cipher are most certainly not. Specifically, the number of

nodes searched for the length 1000 cipher is almost an order of magnitude more than the

largest measurement in Table 5.1.

An overall decrease in the number of nodes that must be searched in longer ciphers

is expected, as well: as a cipher string gets longer, it will likely give more clues as to

which partial solutions are correct and which ones are not. This leads to an overall

decrease in the complexity of the search space. Overall, the time required for each sweep

of the Viterbi algorithm increases with cipher length, but this is more than offset by the

decrease in the number of required sweeps.

Perhaps most interestingly, we note that the number of enqueued partial solutions is in

every case identical or nearly identical to the number of partial solutions expanded. From

a theoretical perspective, we must also remember the zero-probability solutions, which
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should in a sense count when judging the effectiveness of our A* heuristic. Naturally,

these are ignored by our implementation because they are so badly scored that they

could never be considered. Nevertheless, what these numbers show is that scores based

on character-level trigrams, while theoretically admissible, are not all that clever when it

comes to navigating through the search space of all possible letter substitution ciphers,

apart from their very keen ability at assigning zeros to a large number of partial solutions.

A more complex heuristic that can additionally rank non-zero probability solutions with

more prescience would likely make a great difference in the running time of this method.



Chapter 6

An Improved Algorithm

As we have shown, our algorithm has an undesirably high degree of variability between

different ciphers. With this in mind, we have worked to improve our method to better

reflect the structure of the problem. We can do this in two ways: we can change the

graph that we search or our heuristic over that graph.

Our method for changing the graph is straightforward. We have already observed

that the order in which the letters are fixed has a large influence on the complexity of the

search. This letter order determines the graph we search, and so one of the changes that

we will make will be to change the order in which the letters are fixed so as to reduce

the overall search complexity. Unfortunately, the optimal order in which we must fix the

cipher letters is difficult to determine. We have experimented with the most-frequent-

first regimen, and found that it performs worse than the original. Our hypothesis is

that this is due to the fact that the most frequent character tends to appear in many

high-frequency trigrams, and so our priority queue becomes very long because of a lack

of low-probability trigrams to knock the scores of partial solutions below the scores of the

extensions of their better scoring but same-length peers. A least-frequent-first regimen

has the opposite problem, in which their rare occurrence in the ciphertext provides too

few opportunities to potentially reduce the score of a candidate.

36
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It is possible to find a good approximation to the optimal order, however, and we

have implemented such an approximation in our improved algorithm. We find our letter-

fixing order by running the first iteration SV it (usually SV it({}, c)) in parallel for every

possible value of c. Thus, for every such run we will obtain the set of partial solutions

that fix a particular ciphertext letter c. Due to the fact that some of the solutions are

pruned since they have probability of zero, these sets are not all the same size. We argue

that the ciphertext letters whose sets of partial solutions are smaller are inherently more

constrained by the cipher, and so are good choices to be fixed first. We therefore fix our

letters in an order such that the ones with the smallest number of partial solutions in the

first run are fixed first. In the case of a tie, in which two ciphertext letters generate the

same number of partial solutions, we revert to the last-first ordering that we used in the

original algorithm. In a sense, what we are doing is initially fixing the letters that give

us a low branching factor when we are close to the source of our graph. Later on, we

will still have to fix the letters that give large branching factors, but these letters will be

fixed when our partial solutions are much larger, and so there will be extra constraints

that will lower the branching factor at that point, as well.

Ideally, we would like to locally choose which ciphertext letter to fix at every node

we search, but we will find this to be impractical. If the order of letter addition is not

the same regardless of the branch of the search, we would have to ensure that no single

partial solution is enqueued more than once (i.e., we would have to prevent situations in

which one branch in our search would hold the solutions {z:a}, {z:a, y:b}, {z:a, y:b, x:c}

while another branch would hold {z:a}, {z:a, x:c}, {z:a, x:c, y:b}). We therefore use our

comparison of partial solutions as a way of fixing letter order only once, at the outset of

our calculations.

We also would like to tighten our heuristic so as to make it better reflect the actual

probability cost on the search space. Such a heuristic would naturally lower the time

required to solve the ciphers, and would be less susceptible to the variability that plagues
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the initial version of the algorithm. A simple way to incorporate more information into

the heuristic is to fix more than one letter in each step. However, fixing more than one

letter in a step is likely to simply exchange a reduction in depth with a large increase

in the branching factor of the search, and so cannot be expected to give a substantial

reduction in search space complexity. We therefore continue to fix only one letter per

step, and instead try to make use of more information in every step.

It can be seen that there is a ready source of new information on the cipher, as well.

Recall that we are already running SV it in parallel for every unfixed cipher letter c in

the initial step of the new algorithm. It would seem to be a waste if we were to run all

of these calculations and then throw most of the resulting data away. We will therefore

make use of the partial solutions generated by all of the ciphertext letters, although we

ultimately only leave one fixed.

Specifically, consider once again the cipher C =“ifmmp xpsme”. In the initial step

of our new method, we run SV it once for each letter “i”, “f”, “m”, “p”, “x”, “s”, and

“e”. After these calculations we might find that the “m” is the most constrained letter,

and so we will fix “m” first. We might also find, however, that the solution {q:p} has

to be pruned because it gives a zero-probability solution. It makes sense to send this

information to later steps of the algorithm, even though “m” is the letter that is fixed

— if there is no nonzero-probability string mapping “q” to “p” without “m” fixed, there

will certainly be no such string after “m” is fixed, either.

Adding the information q :/p to the partial solutions fixing “m” allows us to streamline

the subsequent iterations of our SV it algorithm. Even if “p” is not the next letter to be

fixed, we can force the Viterbi algorithm itself to ignore the strings that map “q” to “p”

as it fills the greenhouse. This will give us fewer strings to consider, and so will in turn

increase the likelihood that we will run into zero-probability solutions in later steps.

We can go through the same process at every step of the algorithm: regardless of

which ciphertext letter we ultimately fix, we run SV it for every unfixed letter. As we
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fill the greenhouse, we ignore mappings that have already been shown to produce zero

probability solutions in the ancestor nodes of the current solution. In turn, we pass all

known zero-probability solutions to the child solutions that will be expanded later. This

allows us to aggressively prune dead-end solutions from our search graph, and so will

allow us to find our solution much faster.

Of course, we also have to ensure as we do this process that the completeness and

correctness of our search is maintained. This presents no difficulty. Since we are only

pruning strings that have a zero-probability mapping as we fill in the greenhouse, any

feasible string (and, specifically, the correct string) will be considered, and so will produce

a solution with a nonzero probability. In fact, the final probability when we fill that

section of the greenhouse will still be at least that of the best feasible full solution

extending the current partial solution. Moreover, as we pass through the graph we

only add constraints to the strings considered, and so the probability at the end of the

greenhouse will still be nonincreasing. In the negative log domain, this means that the

correct solution is still reachable, and that our score for the nodes that we search will be

a lower bound for the true score and will be nondecreasing. The score we compute for

each partial solution is therefore still a consistent heuristic, and so our search using it is

still complete and correct.

Putting these changes together, we implement our modified algorithm by altering our

original function SV it into a new function SV it′. This new function is essentially a set

of parallel calls to SV it, save for the fact that it allows extra constraints, in the form

of forbidden mappings, to be used when filling the table. We have also changed the

search section of our algorithm to maintain the overhead required for the use of this new

function, as well as to determine the new order in which the ciphertext letters will be

fixed. The code for the revised A* section of the search is given in Algorithm 6.1, and

the new function SV it′ is given in Algorithm 6.2.
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Algorithm 6.1 New A* Section of the Search Algorithm

Input: The ciphertext C and (optionally) the starting partial solution σ0.

The function call is of the form: Decipher′(C, [σ0]).

Output: The most likely full solution σ to C.

1: if σ0 is not given as an argument then

2: σ0 = {}.

3: Create a priority queue Q for tuples of the partial solutions σ and the sets of forbidden

mappings F , ordered by highest probability.

4: Push the starting σ0 solution onto the queue.

5: while Q is not empty do

6: Pop the best partial solution and forbidden mapping set (σ, F ) from Q.

7: s = |σ|.

8: if s = nC then

9: Return σ

10: else

11: Set SV = SV it′(σ, F )

12: if This is the first iteration of the while loop then

13: Order the letters c1 . . . cnC
according to which is the most constrained in SV .

Break ties by rightmost first.

14: Let SVcs+1 be the greenhouse in SV corresponding to cs+1.

15: Let F ′ be F updated with all mappings rendered impossible in SV .

16: for all p not in the range of σ do

17: Set the value G(σ ∪ {p:cs+1}) to be maxl∈ΣP
(SVcs+1(len(C)− 1, l, p)).

18: if G(σ ∪ {p:cs+1}) <∞ then

19: Push (σ ∪ {p:cs+1}, F ′) onto Q with the score G(σ ∪ {p:cs+1}).

20: Return “Solution Infeasible”.
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Algorithm 6.2 The New Specialized Viterbi Algorithm

Input: partial solution σ and a set F of forbidden mappings of the form p :/c.

The function call is of the form: SV it′(σ, F ).

Output: Set of greenhouses Gc for every c /∈ σ.

1: for all c not fixed in σ do

2: Create and initialize the tables Gc, Bc.

3: for all (l, k) such thatσ ∪ {k:c, l:C[0]} is consistent, {k :/c, l :/C[0]} ∩ F = ∅ do

4: Gc(0, l, k) = P (l).

5: for all (l, k) such thatσ ∪ {k:c, l:C[1]} is consistent, {k :/c, l :/C[1]} ∩ F = ∅do

6: for all j such that σ ∪ {k:c, l:C[1], j:C[0]} is consistent and j :/C[0] /∈ F do

7: Gc(1, l, k) = max(Gc(1, l, k), Gc(0, j, k)× P (l|j))

8: Bc(1, l, k) = the j for which this max was found.

9: for all (l, k) such thatσ ∪ {k:c, l:C[2]} is consistent, {k :/c, l :/C[2]} ∩ F = ∅ do

10: for all j1, j2 such that σ ∪ {k : c, j2 :C[0], j1 :C[1], l :C[2]} is consistent and

{j1 :/C[1], j2 :/C[0]} ∩ F = ∅ do

11: Gc(2, l, k) = max(Gc(2, l, k), Gc(0, j2, k)× P (j1|j2)× P (l|j2j1)).

12: Bc(2, l, k) = the j1 for which this max was found.

13: for i = 3 to len(C)− 1 do

14: for all (l, k) such that σ ∪ {k:c, l:C[i]} is consistent, {k :/c, l :/C[i]} ∩ F = ∅ do

15: for all j1, j2 such that σ ∪ {k:c, j2 : C[i−2], j1:C[i−1], l : C[i]} is consistent

and {j1 :/C[i− 1], j2 :/C[i− 2]} ∩ F = ∅ do

16: Gc(i, l, k) = max(Gc(i, l, k), Gc(i−2, j2, k) × P (j1|j2Bc(i, j2, k)) ×

P (l|j2j1)).

17: Bc(i, l, k) = the j1 for which this max was found.

18: Return {Gc|c /∈ σ}.
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This new version of the algorithm maintains the property that the nP × nP cells of

every column in each of the nC different tables do not depend on each other, and so

each can be filled in parallel. We have once again written the underlying algorithm in

C/C++, and we have used the CUDA library to implement the parallel sections of the

code.



Chapter 7

Experiments, Part 2

In our second round of experiments we have tested the performance of the improved

version of our algorithm using SVit′ as compared to the performance of the algorithm

using SVit. We have therefore tested this modification of our algorithm in the same task

as before. The conditions of our tests were also the same as those in Chapter 5. We have,

however, added an additional two sets of ciphers to be used in these experiments. The

additional test sets have been constructed in the same manner as those used in Chapter 5,

in that one is a set of 10 6000 character ciphers and the other is a set of prefixes taken

from the same 13500 character long ciphertext. These extra test sets have been added to

this round of experiments because our improved algorithm was developed in response to

our observations regarding the results in Section 5.3. They serve the purpose of ensuring

that our test sets are not so uniform over multiple generations of our algorithm that we

have to worry about overfitting.

7.1 Results, Part 2

In our first set of tests, we looked at the performance of the improved version of our

algorithm over 10 6000 character ciphertexts. Once again, the time values in these tables

are in the format of (H)H:MM:SS. The results of this run are given in Table 7.1.
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Cipher Time Enqueued Expanded Zeros Accuracy WER

1 2:32:32 56 56 1476 100% 0%

2 2:16:57 52 52 1325 100% 0%

3 2:15:29 52 52 1325 100% 0%

4 2:32:57 55 55 1410 100% 0%

5 2:34:37 65 65 1851 100% 0%

6 2:36:52 55 55 1426 100% 0%

7 2:46:59 51 51 1778 100% 0%

8 2:39:08 57 57 2576 100% 0%

9 2:31:57 48 48 1465 100% 0%

10 2:46:36 53 53 1362 100% 0%

Table 7.1: Time consumption and accuracy of the improved algorithm on the original

set of 10 6000-character ciphertexts.
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Version Size Time Enqueued Expanded Zeros Accuracy WER

New 1000 4:31:17 1296 1293 45892 92.59% 1.89%

Old 1000 57:56:01 119759 119755 5172631 92.59% 1.89%

New 3500 1:35:12 55 54 1479 96.30% 0.17%

Old 3500 0:52:35 615 614 26865 96.30% 0.17%

New 6000 2:27:33 57 57 1565 100% 0%

Old 6000 0:16:31 147 147 5709 100% 0%

New 8500 3:22:33 56 56 1530 100% 0%

Old 8500 12:45:55 1302 1302 60978 100% 0%

New 11000 4:18:02 56 56 1530 100% 0%

Old 11000 1:28:05 210 210 8868 100% 0%

New 13500 5:10:01 56 56 1530 100% 0%

Old 13500 1:15:19 219 219 9277 100% 0%

Table 7.2: Time consumption and accuracy of the original (“Old”) and improved

(“New”) algorithm on prefixes of the original 13500-character ciphertext.

In our second set of tests, we compared the time consumption and accuracy of the two

versions of our algorithm over several prefixes of different lengths of the original 13500

character ciphertext. The results of this run are given in Table 7.2.

After the first two sets of tests, we swapped out the original test sets for the new

ones. These sets were of the same form as the old ones, and so our third set of test

measured the time consumption and accuracy of the new version of our algorithm over

10 new ciphers taken from random texts that were 6000 characters long. The results of

this run are given in Table 7.3.
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Cipher Time Enqueued Expanded Zeros Accuracy WER

1 2:45:40 58 58 1632 100% 0%

2 2:34:26 58 58 1630 100% 0%

3 2:19:29 53 53 1477 100% 0%

4 2:22:56 53 53 1525 100% 0%

5 2:34:31 55 55 1670 100% 0%

6 2:53:32 70 70 2281 100% 0%

7 2:17:50 51 51 1515 100% 0%

8 2:41:21 57 57 1725 100% 0%

9 2:15:54 48 48 1408 100% 0%

10 2:29:37 53 53 1661 100% 0%

Table 7.3: Time consumption and accuracy of the improved algorithm on the held-out

set of 10 6000-character ciphertexts.
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Version Size Time Enqueued Expanded Zeros Accuracy WER

New 1000 2:07:12 314 308 13907 95.65% 2.56%

Old 1000 442:49:47 1194831 1194817 51738099 95.65% 2.56%

New 3500 1:35:15 54 54 1479 100% 0%

Old 3500 0:36:30 334 334 14119 100% 0%

New 6000 2:34:25 54 54 1479 100% 0%

Old 6000 10:11:56 4144 4144 198044 100% 0%

New 8500 3:28:59 55 55 1529 100% 0%

Old 8500 0:13:54 85 85 2944 100% 0%

New 11000 4:23:07 54 54 1479 100% 0%

Old 11000 0:38:30 148 148 6031 100% 0%

New 13500 5:22:54 55 55 1480 100% 0%

Old 13500 3:16:55 460 460 20787 100% 0%

Table 7.4: Time consumption and accuracy of the original (“Old”) and improved

(“New”) algorithm on prefixes of a held-out 13500-character ciphertext.

Finally, we compared the time consumption and accuracy of the two versions of our

algorithm over several prefixes of different lengths of a new 13500 character ciphertext.

The results of this run are given in Table 7.4.

The first thing we note in these results is that the accuracy and the word error rate

for the prefix ciphers in Table 7.2 and Table 7.4 do not depend on the algorithm used,

but only on the cipher that is run. This is to be expected, since both algorithms find the

model optimal solution for the cipher. The main difference between the algorithms is in

their efficiency and stability. As before, the accuracy of the results is above 90% for all

ciphers, and is 100% for all ciphers of a length of at least 6000 characters.

When comparing the the number of nodes searched between the two algorithms, we
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see an across-the-board improvement in the improved version. In fact, the efficiency of

the search that is made by the improved algorithm is very close to the best that could

be run in this particular framework. That is, so long as we fix only one letter per run of

the generalized Viterbi algorithm, we will need at least as many runs as there are letters

in the ciphertext alphabet. The size of the ciphertext alphabet in the ciphers used in

the above experiments varies, but always lies between 46 and 53 letters. Thus, for every

cipher of at least 3500 characters, the overall number of steps in the search is close to

the minimum number of steps.

This is somewhat offset by the increase in time required for the improved algorithm

to run. While the improved algorithm can is faster than the original for a few of the

ciphers, we can see that the original version of the cipher is actually the faster version

much of the time. The overall slowdown of the improved algorithm is to be expected,

however, since a run of SVit′ is in a sense made up of many runs of SVit. Although these

runs are calculated in parallel, the number of parallel calculations that can be made at

one time on our hardware is still limited, and so there is also an overall increase in time.

We argue that the improved version of our algorithm is still an improvement over the

original version in spite of this slowdown due to the fact that we also find it to be very

stable across different ciphers. In our data, we see that for the original algorithm, the

difference in the required running time across ciphers is not easily related to the length of

the cipher. The times required to run the 3500, 6000, 11000 and 13500 character ciphers

in Table 7.2 and the 3500, 8500 and 11000 character ciphers in Table 7.4 are low, while

we see a spike in the times required for the 8500 character cipher in Table 7.2 and the

6000 and 13500 character ciphers in Table 7.4. The data from the new test sets also

confirm our earlier observation that the short 1000 character cipher can be expected to

require many more iterations than the longer ones.

In contrast, the improved version of our algorithm has very little variation in running

time or efficiency across ciphers. In Table 7.1, we see that the variation in the time
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required to solve the different ciphers is much lower than that which is seen in Table 5.1.

The results shown in Table 7.3 are also very stable. The difference in stability is also seen

in Table 7.2 and Table 7.4. Where the original version of the algorithm is more dependent

on the order in which letters occur than on the length of the cipher, we see a clear relation

between cipher length and the running time of the improved algorithm. For the ciphers

of at least 3500 characters, the running time of the improved algorithm is roughly linear.

This is to be expected, since the number of runs of the generalized Viterbi algorithm is

almost constant for these ciphers, and since the main difference between these ciphers in

the time required for each run of the generalized Viterbi algorithm is the length of the

cipher. This trend does not extend to the 1000 character cipher because it requires more

generalized Viterbi runs to solve. A shorter cipher places fewer constraints on the strings

in the Viterbi table, and so more strings get passed on to the A* queue. It is likely that

the same effect can be exploited for the original version of the algorithm, but since we

can see a spike in running time due to the order of letter fixing even for the cipher of

13500 characters, we expect that the cipher length needed to guarantee stability would

be higher than is practical.

Finally, our second set of experiments confirms our observation in Section 5.3 that the

number of enqueued partial solutions is in every case very nearly identical to the number

of partial solutions that are expanded. The difference between the two sets of results lies

in the number of partial solutions that are enqueued. The first change in our improved

algorithm forces the program to use information from previous runs to aggressively prune

the strings that are considered acceptable during the process of filling the Viterbi table,

and this in turn decreases the number of partial solutions that make it on to the queue

at all. The second change in our improved algorithm is an attempt to minimize the

branching factor of the A* tree. In neither case is the value of the trigram probability

as a score for the goodness of the solution severely impacted on. The improvement in
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our results stems from a greater use of the information gleaned from the value of the

presence, as opposed to the actual value, of a trigram probability in our language model.



Chapter 8

Conclusions

In this paper, we have developed and presented an algorithm for solving letter-substitution

ciphers, with an eye towards discovering unknown encoding standards in electronic doc-

uments on the fly. In a test of the fully developed version of our algorithm over ciphers

drawn from Wikipedia, we found its accuracy to be 100% on almost all of the ciphers

that it solved. We found that the running time of our algorithm is stable across different

ciphers, and that that the linear-time theoretical complexity of this method can be seen

for ciphers whose sizes are within our range of interest. For sufficiently short ciphers, the

running time tends to decrease with an increase in ciphertext length due to our character-

level language model’s facility at eliminating highly improbable solutions. This facility

is seen, however, to be due to the presence of a trigram in a language model, as opposed

to its actual probability. There is therefore room for improvement in the trigram model’s

ability to rank partial solutions that are not eliminated outright.

Our algorithm is well adapted to our problem in that it is guaranteed to converge

to the optimal solution to a cipher given a language model, and will not get stuck in

local optima. The algorithms presented by Peleg and Rosenfeld (1979) and Knight et al.

(2006) do not give this guarantee, and so may require random restarts. The algorithms

presented by Jakobsen (1995) and Gester (2003) can also get stuck in local optima. Our
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algorithm demonstrates a fundamental theoretical improvement over these predecessors

in this regard.

Moreover, although we assume knowledge of the location of the word endings in our

experiments, we do not actually require it for our algorithm to function — decoding a

cipher with no previous knowledge will naturally take longer, but the underlying search

will only differ in its starting point. This gives us an advantage over the algorithms

presented in Hart (1994) and Olson (2007), which require knowledge of the location of

the word endings in order to function. This makes our algorithm applicable in a much

wider range of circumstances than these predecessors.

The contribution of Ravi and Knight (2008) is, like our solution, guaranteed to con-

verge to the model optimal solution without random restarts, but requires massive run-

ning times to do so. This indicates that the algorithm that they use is inefficient in this

task. In addition, their algorithm does not readily break into parallel subprograms, and

thus requires all of its work to be run on a single CPU. On the other hand, our improved

algorithm has not only been shown to be very efficient in this task, but also to be highly

parallelizable. In our experiments, our algorithms have been split between the many

cores of a NVIDIA graphics card, and have shown very good running time complexity.

As we have said in Chapter 5, we would have liked to compare our method empirically

with the method presented in Ravi and Knight (2008), but their method was simply not

feasible on our hardware for the size of ciphertext and plaintext alphabets that we have

used.

Perhaps the most valuable insight gleaned from our study has been on the role of the

language model. The algorithm’s asymptotic runtime complexity is actually a function

of entropic aspects of the character-level language model that it uses — more uniform

models provide less prominent separations between candidate partial solutions, and this

leads to badly ordered queues, in which extended partial solutions can never compete with

partial solutions that have smaller domains, leading to a blind search. We believe that
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there is a great deal of promise in characterizing natural language processing algorithms

in this way, due to the prevalence of Bayesian methods that use language models as

priors.

Our approach makes no explicit attempt to account for noisy ciphers, in which char-

acters are erroneously mapped, nor any attempt to account for more general substitution

ciphers in which a single plaintext (resp. ciphertext) letter can map to multiple ciphertext

(resp. plaintext) letters, nor for ciphers in which ciphertext units correspond to larger

units of plaintext such as syllables or words. All of these problems provide worthwhile

avenues for future research.
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