Introducing Tool Support for Knowledge Management n Software
Architecture Evaluation Process

"Muhammad Ali BabarPAndrew Northway?lan Gorton2Paul Heuer’Thong
Nguyen
'Empirical Software Engineering, National ICT Auitrd_td.
malibaba@nicta.com.au
ZAir Operations Division, Defence Science and TedbgOrganisation
{andrew.northway,paul.heuer,thong.nguyen}@dstoraafajov.au

3pacific Northwest National Laboratory, USA
lan.gorton@pnnl.gov

NICTA Technical Report # PA006116.
January 2007

Abstract

Management of software architecture knowledge ftal vior improving an organisation’s
architectural capabilities. Despite the recognitadrihe importance of capturing and reusing
software architecture knowledge, there is curremity suitable support mechanism. To
address this issue, we have developed a concefptumaéwork for managing architecture
design knowledge. A web-based knowledge managetoeht Process-based Architecture
Knowledge Management Environment (PAKME), has bemveloped to support that
framework. This report discusses the main archuitettomponents and features of PAKME.
We also discuss different usages of the tool fgtuwiang and using architecture design
knowledge to support the software architecture ggsc This report also describes the
objectives, logistics and initial findings of depiog and trialling PAKME in an Australian
Defence acquisition environment for evaluating tamy mission system’s architecture.

Table of Content

N [011 7o o [¥ o1 1o o [P TP PP P TPPPPPPPN 4
2. Knowledge Management Problems in Architecture F3®Ce..........cccciiiiiiiiiiiiiiiiieee e, 5
3. Knowledge Management TOOI SUPPOItooi i 5
4. Managing Architecture Knowledge with PAKMEccooiiiiiiiiiiiieieeee s 8
4.1. Capturing and presenting KNOWIEAQEccecceeiiiiiiiiieee et 9
4.2. Supporting KNOWIEAQE USE/TEUSE o eeeeeeeeeaaaaaae e e e e et e e e e e e e e e 13
4.3. Support for design and analysis methods ..., 15
5. Traling PAKME ...ttt et e e e e e e e e e e et ee e 17
5.1. OrganiSatioNal CONEEXL. eieieeiiiiii e e et e e e e e e e e e s e neeeeeees 17
5.2. THAP'S ODJECHVES ...ttt et e e e e e e e e e as 18
5.3. TailoriNG PAKIME ...ttt ettt e e e e e e e e e e e e e e nnnneneeeeeeees 19
5.4. PrOJECE DESCIIPLION.uitiiiiiiiiiiiie i et ettt ettt e e e e e e e e e e e e e e e e et e e e e e e e aaaaaaaaeaeas 20
5.5. Use of PAKME’S Knowledge Daseuuiimemiianiiiiiiieeeeeeee e 20
5.6. Use of PAKME'S ProjECt DASEocoiiii et 22
5.7. Challenges and ODSEIVALIONSe i ceeeeeeeaeaa e e e e eeeeeeeaaaaaaee s 24

6. Conclusion and Future Work
7. (R Y (] (=] (01T

1. Introduction

The Software Architecture (SA) process consistsseveral activities (such as design,
documentation, and evaluation), which involve camwpknowledge intensive tasks [1, 2].
The knowledge that is required to make suitablaigectural choices and to rigorously assess
those design decisions is broad, complex, and enghSuch knowledge is often beyond the
capabilities of any single architect. The softwarehitecture community has developed
several methods (such as a general model of saftasmnhitecture design [3], Architecture
Tradeoff Analysis Method (ATAM) [4], and architectabased development [5]) to support a
disciplined architecture process. Although, theppra@aches help manage complexity by
using systematic approaches, they provide littjgpsut to provide or manage the knowledge
required or generated during the software architegbrocess.

The requisite knowledge can be technical (such atems, tactics, and quality attribute
analysis models) or contextual (such as designoogticonsidered, tradeoffs made,
assumptions, and design reasoning) [6]. The fortype of knowledge is required to
identify, assess, and select suitable design opfiendesign decisions. The latter is required
to provide the answers about a particular desigioomr the process followed to select that
design option [7, 8]. If not documented, knowledgacerning the domain analysis, patterns
used, design options evaluated, and decisions nsadest, and hence is unavailable to
support subsequent decisions in development lifed@e11].

Recently, various researchers [12, 13] have prapasiéerent ways to capture contextual
knowledge underpinning design decisions. An esakrgquirement of all these approaches is
to describe software architecture in terms of deslgcisions and the knowledge surrounding
them. However, architecture design decisions amd dbntextual knowledge are seldom
documented in a rigorous manner. Moreover, we lads@ found that there is little use/reuse
of the architectural artefacts (such as scenaqaslity attributes and tactics) informally
described in patterns’ documentation [14]. Thisrdght is simply because current formats
for describing patterns are not suitable for thiéwsre architecture process — too much detalil
is counter-productive as expert designers usualioWw a breadth-first and depth-later
approach [1]. Nor do pattern documentation formatglicate the schemas of the
relationships among scenarios, quality attribueas] patterns in a way that makes this
knowledge readily reusable.

In order to provide an infrastructure for managsodtware architecture knowledge, we have
developed a framework for managing architecturewkedge [6, 15]. This framework
consists of techniques for capturing design deassend contextual information, an approach
to distill and document architectural informatiororh patterns, and a data model to
characterise architectural constructs, their atteb and relationships [6]. The central
objective of this framework is to provide a theaalt underpinning and conceptual guidance
to design and implement a repository-based toolpsupfor managing architecture
knowledge [15]. We have extended this frameworknimorporate Case-Based Reasoning
(CBR) to contextualise the captured knowledge. fitneelty of this framework resides in its
ability to incorporate all the components into amegrated approach, which has been
implemented in a web-based architecture knowledgmagement tool called PAKME
(Process-based Architecture Knowledge Managemenirderment). This report describes
various aspects of PAKME and explains how PAKME haen applied in the context of

evaluating architectures for mission systems inkb&ence environment. The implementation
of PAKME is intended to provide a practical solatito knowledge management issues that
characterise the architecture process and aresgisdun the following sections.

2. Knowledge Management Problems in Architecture Proces

One of the problems in software architecting precessthe lack of access to knowledge
underpinning the design decisions and process (Q§, This type of knowledge involves
things like the impact of certain middleware chsiom communication mechanisms, why an
API is used instead of a wrapper, and who to cantadiscuss the performance issues. Much
of this knowledge is episodic and is usually natwtoented [2]. The absence of a disciplined
approach to managing architecture knowledge hasyrdawnstream consequences which
include:

* The evolution of the system becomes complex andbeusome, resulting in

violation of the fundamental design decisions
* Inability to identify design errors
* Inadequate clarification of arguments and inforomatisharing about the design
artefacts and process.

All of these factors cause a loss of substantiavkadge generated during the architecture
process, thus depriving organisations of a valuadé®urce. Further, loss of key personnel
may mean loss of knowledge [2, 16, 17].
The architecture research community has developedral methods (such as ATAM [4],
PASA [18]) to support a disciplined approach tohéexctural practices. Some of these
methods emphasise the need for knowledge manager®never, there is no approach that
explicitly states what type of knowledge needs ¢ontanaged and how, when, where, or by
whom to support architecture activities. Also, naiehe current approaches provides any
conceptual framework to design, develop and maintai repository of architecture
knowledge. To address these issues, we have gedebbframework for managing software
architecture knowledge. This framework incorporatescepts from knowledge management
[19, 20], experience factories [21, 22], and pati®ining [14, 23] paradigms to provide an
integrated support environment. The framework negua knowledge repository, which is
logically divided into two types of architecturedwledge: generic architecture knowledge
(such as general scenarios, patterns, qualitypatas, design options and others), and project
specific architecture knowledge (such as concre¢marios, contextualised patterns, quality
factors, architectural decisions and others). Tleeegc knowledge is accumulated by
capturing architecture knowledge using the techesquincluded in our framework for
capturing and using architecture design knowledgé [

3. Knowledge Management Tool Support

PAKME is a web-based architecture knowledge managenool that is aimed at providing
knowledge management support for the software ttire process. It has been built on top
of an open source groupware platform, Hipergatd. [Z4is platform provides various
collaborative features including contact managemepioject management, online
collaboration tools and others, which can be exptbito build a groupware support

mechanism, which incorporate architecture knowledgenagement features, for

geographically distributed stakeholders involvethi& software architecture process.

An appropriate conceptual data model is a preréquisr developing an integrated support
environment to assist in the improvement of a cedaftware development process [25] such
as software architecting.

contains [
| ArchitectureDecision |

N\

has

iz_child_of

contains

ask B

sontains ‘I?\‘
'

is_used by

belongs to

identifies iz_analyzed_to_identify

User Group

consists_of

‘ DesignHistory

iz_used_to_identify

belongs_to is_deseribed_by

Finding]

is_a is_a

—_]

Scenario

N Nonfisks
Log

Figure 1: A partial data model characterising archi tectural artefacts captured in the
software architecture knowledge base

Like the modelers of measurement data [26], we bidieve that a data model is one of the
earliest artefacts needed for the development ofaatomated system for storing and
accessing the data that underpin the architectesggd knowledge. Additionally, the data
model needs to be customisable in order to meetnteds of different domains and
organisations for characterising architecture kmaolgk [6]. Figure 1 presents a partial
conceptual data model that identifies the mainitectural constructs and their relationships.
This data model has been constructed during domaideling aimed at characterizing
knowledge used or generated during software awthite process. The process of domain
modeling and an extended version of this data edfiotnd in [6].

The knowledge repository of PAKME is logically didd into organisational knowledge
(generic), and project-specific knowledge (congreide generic architecture knowledge is
accumulated by using the knowledge capture teclesigiescribed [27, 28]. Project-based
architecture knowledge consists of the artifactthegi instantiated from the generic
knowledge or newly created during different aci@stof the software architecture process.
Access to a repository of generic architecture Kedge enables designers to use the
accumulated “wisdom” from different projects whemviding or analysing architectural
decisions for projects in the same or similar dormaiFor example, instantiating abstract
scenarios into concrete ones, contextualizing dedégisions and others. The project specific
part of the data model also has other entities dpture and consolidate architecture

knowledge and rationale that is specific to a paléir project. For example, design history,
findings of architecture analysis, architecturaws of interest to each type of stakeholders
and others. A project specific architecture knowkedrepository is populated with
architecture knowledge drawn from the organisatioepository, standard work products of
the design process, logs of the deliberations aistbries of documentation to build
organization’s architecture design memory [29].

1

User Interface

1-1-'-
el 1 T
eporting | Knowledge Search
mgmt — =

|
] e

Data Mgt

v

DataStore

Figure 2: Component view of PAKME’ architecture

We have also made certain modifications to the gmadion and business logic tiers of
Hipergate in order to add the features requiredajoture, retrieve and manage architecture
design knowledge. Currently PAKME consists of foamponents as shown in Figure 2.

User Interface — The only way to interact with PAENE through a user interface
that is integrated into Hipergate. It has been @mgnted using Java Server Pages
(JSP) and HTML.

Knowledge management — This component provides comservices to store,
retrieve, and update artefacts that make up aathie knowledge. This component
also provides services to instantiate generic tectural artefacts into project-
specific artefacts. For example, creating conceetenarios to characterise quality
attributes for a project based on general scenatayed in the knowledge-base.
Search — This component helps users search theedemitefacts. There are three
types of search functions: keyword-based searcharad search, and navigation-
based search. The keyword-based search facilitpegthe repository for a desired
artefact utilising key words that are attached agandata to each artefact. The
advanced search function is based on a combinaifotogical operators. The
navigational search is provided by presenting #teiaved artefacts as hyperlinks,
which can be traversed for further details.

Reporting — This component provides the servicasrépresenting architectural
knowledge to explicate the relationships that ekistween different architectural

artefacts or to show their positive or negativeee§ on each other. The reporting
component also supports architecture evaluatiorhélping stakeholders develop
utility trees to specify quality attributes and geating the findings of architecture
analysis as a result tree.

+ Data Management — This component provides all éneices to store, maintain, and
retrieve data from a persistent data source, wisidmplemented with PostgreSQL
8.0. The data management logic uses Postgresjstingrianguage. The repository
has been designed based on a data model desarniffgdand partially presented in
Figure 1.

4. Managing Architecture Knowledge with PAKME

Most of the approaches to managing knowledge caadly be categorized into codification
and personalization [30]. Codification concentrates identifying, eliciting and storing
knowledge as information in repositories, which anepected to support high-quality,
reliable, and speedy reuse of knowledge. Persataiz resorts to fostering interaction
among knowledge workers for explicating and shakimgwledge. Though, this paper focuses
on those features of PAKME that support codificatithis tool also supports personalization
as it not only provides access to architecturalvkadge but also identifies the source of
knowledge. That means it can also support a hysriategy to managing knowledge [31].
Here we briefly discuss the four main services &KRIE for managing architecture
knowledge to support software architecture process:

* Knowledge acquisition service provides various ®mnd editing tools to enter new
generic or project specific knowledge into the m@fmyy. The knowledge capture
forms are based on various templates that we hastgred to help maintain
consistency during knowledge elicitation and suitiog processes.

* Knowledge maintenance service provides differemcfions to modify, delete and
instantiate the artifacts stored in the knowledgpository. Moreover, this service
also implements the constraints on the modificatioh different artifacts based on
the requirements of a particular domain.

* Knowledge retrieval service helps a user to loeai retrieve desired artifacts along
with the information about the artifacts associatetth them. PAKME provides three
types of search mechanisms. A basics search cperimmed within a single artifact
based on the values of its attributes or keywobasadvanced search string is built
using a combination of logical operators within iagke or multiple artifacts.
Navigational search is supported by presenting rteeved artifacts and their
relationships with other artifacts as hyperlinks.

* Knowledge presentation service helps presents ledyye to in a structured manner
at a suitable abstraction level by using templdtesh as provided in [32]) and
representation mechanisms like utility and reséiss described in [33].

These services not only satisfy the requiremergstified by us to provide knowledge
management support for methods like [34, 35], dab support many of the use cases
proposed in [13] such as add a decision, retreevkesign decision, get a rationale, clone
architecture knowledge, attach relevant documem@rtifacts, and study the chronology of
design decisions.

4.1. Capturing and presenting knowledge

There are usually two main strategies to elicit eodify knowledge:

1. Appoint a knowledge engineer to elicit and codifyoWwledge from individuals or
teams [2, 36];

2. Provide a tool to encode the knowledge into thaesysas part of the knowledge
creation process.

The latter is called contextualised knowledge asitjon [37]; each of this strategy has its

strengths and weaknesses. To take the advantegeengths of both strategies, PAKME

helps elicit and codify architecture knowledge gseither of these strategies. We have

been using PAKME by embedding it into knowledgeatien processes. Its repository

has been populated by capturing knowledge from raev@EE [38] patterns and

architecture patterns [39], and case studies destin [4, 33] or design primitives [40].

General Scenario Listing

4 ew (3 Delete [] Accent Reiect S [rame v Search W Discard show [50 %] resuits
Proposed General Scenarios
== Previous
% Name B4 Description 3 Source % Date Entered Logs
SEC OV8 shall accept online payments for the services that means the transactions between the QWS User-Defined Sun 24 Dec 2005 10:47 o
I— and financial institutes must be protected,
SEC-2 QWS provides secured storage o customers’ credit details and other information User-Defined Sun 24 Dec 2006 19:47 .
SEC-3 QS shall be able to identify different users and verify their access privileges according to their User-Defined Sun 24 Det 2005 19:49 =
— memberships of different user groups
SEC-4 @5 shall be able to detect and prevent Denial Of Service (DOS) altacks. The system shall be User-Defined Gun 24 Dec 200 19:49 -
I able to run reliably most of the tirme.
SECE QWS is an evolving systern that shall be easily modifiable to infroduce changes inthe security User-Defined Sun 24 Det 2005 10:50 -
I— policy and other security checks.
Accepted General Scenarios
== Previous
2% Name B2 Description % Source %% Date Entered Logs
Performance Renuire bounded responge time andfor certain eystemn throughput, Uger-Defined Tue 19 Dec 2006 1128 .
Chanaing the hardware platform Change physical location of service with minimal impact on the rest of the system Pattern Tue 19 Dec 2006 10:23 -
Changes number of users MNurnber of users changes while maintaining other gualities such as performance, Pattern Tue 18 Dec 2006 10:50 -
Change the implermentation Implementation details change without affecting much of the rest ofthe system Pattern Tue 19 Dec 2006 11:48 -
Addition of funetionality Addition of functianality without impacting the rest of the system, Pattarm Tue 18 Dec 2006 14:49 =

Aninternal or external component faile and the system i¢ able to recognize the failure and hag

Availabili strategies to compensate o the Tault Pattern Tue 19 Dec 2006 12:04 -
Mot prepared event An event arrives atthe systern for which it was not prepared. User-Defined Tue 18 Dec 2006 15:20 -
G G UserDefined Thu 21 Dec 20061012 -
Rejected General Scenarios
== Previous
2% Name B2 Description % Source %% Date Entered Logs
BD-53 Changes in the business services implementation shall not require corresponding changes in User-Defined Fri 28 Jan 2005 1102 -
_ their clients residing in other tier.
BD81 Presentation-tier campanents shall not e exposed to the implementation detalls of the business o, Fri 28 Jan 2005 11:01 -
— senvices they use
BD-55 SDE\I?Erzr;tchenm,suuh as devices, web clients, and thick clients need accese to business Pattern Fri 28 Jan 20051116 =
BD-S4 Semices calls across netwark or tiers shall be minimized to 2void degraded perarmance. Patterm Fri 28 Jan 2005 11:02 =

Figure 3: General scenarios captured by PAKME's rep ository

As we mentioned, PAKME provides several kinds ofrfe based on different templates to
help users elicit and structure knowledge befooeirgj it into the repository. Templates are
aimed at keeping the process consistent across (86f. Figure 4 shows a form for
capturing a general scenario, which can be eliditech a stakeholder or extracted from a
pattern. Each scenario can have several attritaitashed to it including source documents,
revision history, and a set of keywords. PAKME’'gasitory contains hundreds of general
scenarios (Figure 3 shows some of them).

R hipergate :: Edit General Scenario - Microsoft Internet Explorer provided by D... [|[[EH]|[E]

Edit General Scenario L=

i Mame [Canceling cammands | =
|Swsterms should allow users to cancel operations. A user invokes an =1

loperatiaon, then No longer wants the operation to be perforrmead.

Description e

=1

Source ser-Defined ~ |

Pattern 1 = s .
= | WS Gf source is Parrerd
DoOCUIMents (Fleao=e add documenrt=.1 5% Add Docurments

Heywords (Plesse ndd keyord=_] S Add leyvewords
Logs (it is creatad onlx if Sovision Sessor is not =mptir

Rewvision
Reason

E=1]

Figure 4: The interface to capture a general scenario

Figure 5 shows a template for capturing and prasgipatterns irrespective of the level of
granularity (i.e., architecture, design, or framewfased). A pattern may be composed of
other patterns (i.e., architectural pattern comairdesign patterns) and each pattern may
have several tactics attached to it. To supportréusability at the design decision level,
PAKME's repository contains design options, whicte alesign decisions that can be
considered and/or evaluated to satisfy one or rhwuretional or non-functional requirements
during architecture design. For example, Java RMpublish-scribe design options can be
used for event notification purposes. Each desighon is composed of one of more
architectural and/or design patterns and each ehtbomposed of one or more tactics. For
example, publish-scribe design option applies ghbiin-demand design pattern.

2l hipergate :: View Pattern - Business Delegate - Microsoft Internet Explorer provided b... [= @@
View Pattern e

Mame Business Tielegate

Type Dresign pattern

| This pattern reduces coupling between Hers and prowvides an entry poimnt for
laccessing the services that are prowvided by ancther tier. It may also prowide results

lcaching for common requests to tmprowve performance. Tt typically uses a Service
Leocator to locate a service. il

Description

In a distributed systerm, clients mawy be exposed to the complexity of dealing with

Context | 2
lthe distributed components that prowide sersnces.

|Prezentation-tier components mteract directly with business serwices, which
Problem lexposes the implementation details of the serwices to the clients. Such a direct
interaction malces the clients vulnerable to any changes in the business serwices.

TTse Business Delegate to reduce coupling between presentation-tier clients and

Solution ‘business serwvices. The Business Drelegate hides the underlyving implementation
idetailz of the business serwice.

Parent W Parens Availabie

Forces 113 Business Serwvice

[Tactics l) Delegate Pro 2y Delegate A dapter
| Positively

Affected l) Performance

Attributes Negarively

i1y Complexity 2) Introduce new laver

Senerad 113 BD-56 2y BD-S2
cenanao
Usage |

Exaniples 13 E-Conmmmerce

Figure 5: Template to capture and present patterns

10

PAKME captures design options as contextualizedesdsom literature or previous
projects. A design option case consists of probderd solution statements, patterns and
tactics used, rationale, and related design optiétetionale for each design option is
captured in a separate template, which is desidiasged on practitioners’ opinion about
rationale reported in [41] and templates proposed9, 42]. Figure 6 shows a partial
description of a design option. By capturing desaptions as cases, PAKME enables
architects to follow a case-based decision appraachsupports human-intensive case-based
reasoning [43].

28 hipergate :: Wiew Design Option - Database Server - Microsoft Internet Explorer =]@
Rationale Wiew Desiogn Option Rationale =]
;%;rchltel:inre Description Project Name PrDIEt.‘
|Used in Name Domain
Architecture High Server Require fast response times from the

s BCS Project research
that inkiy Performance server. [more . =

This design. "Database Server". was inspired by the following Design Options:
[Find more Inspiration...

Design Option Description

A Secondary Server is installed onto the system to help share the
workdoad. ™ot only will this help improve the efficiency. but if the
primary server failed. then the secondary server can continue the
service. [more. ..

Introduce an extra server as backup. The extra server will be
connected into the system but will only run when the primary
server has failed Hence users would not feel a lost in

service. [more .

Inspiration
i Secondary Server Svstem

Backup Server System

This design. "Database Server”. inspired the following Design Options:

Inspired other = = S
st O Design Option Descnpﬁnf] i])
Introduce different servers to provide different services for the
Nultiple Server System client. Hence would greatly reduce the workload the current Less
servers. [more...
Modify Modifyr current Desion Option

Figure 6: A partial view of a design option case

Recently, there has been an increased emphasissonliing software architecture as a set
of design decisions [10, 44]. Kruchten et al. hgwveposed a taxonomy of architectural
decisions, their properties, and relationships ajrtbem [13]. Figures 7 shows that PAKME
can capture many of the attributes and relatiosship architecture design decision as
described in [13] and template proposed in [9PAKKME, architecture design decision can
be described at different levels of granularityaasarchitecture design decision is a selected
design option, which can be composed of architatpattern, design pattern or design tactic.
Like a design option, each architecture design sileti also captures rationale using a
template. This rationale describes the reasonsrpimhéng the architecture design decision,
justification for it, tradeoffs made, and argumeioia leading to the design decision. Hence,
PAKME captures rationale for design options as wasllfor architectural design decisions,
which are made by selecting one or more suitablsigde options from a set of
considered/assessed design options.

11

3 hipergate :: View Architecture Decision - Create parameter file - Microsaft Internet Explorer pro... E@E

|

View Architecture Decision =]
Name (Create parameter file
Concraete Scenario ;Sﬁnlﬂation controller
Quality Factor -Up when ready to game
o Parameter files were created to allow generic obijects in the sunulation to be
Description : ; ; : : R
iinstantiated mto specific objects during mitalization,
Comment [This approach permitted masimum Aezbility mn configuring simulations.
Architecture Description Functionsiprocesszes are divided between clients and server.
Contractor ;SOAR
Compliant 'C.ornp]ied
Ranking No ranking enierad
External Server system
Considered Decisions .
|encapsulation
Present Rationale
: ae Date Time Design Option ""e?”
Architecture Decision . [Rationale
Build the sraphical parameter file | '
2006-12-15 17:05:58 [detail ..
front end s]
|Past Rationales
Design Histor i Wi
9 Y Date Time Design Options ZV_'E?V
Rationale
Created By File Name
Documents | Adrumstrator Implementation-Artefact doc | | |
| A dmimistrator Requirement-Artefact doc
Rl Relation Is Architecture Decision
elationships { ; .
b Enables sitmulation =

Figure 7: An architecture decision captured in PAKM E

Moreover, traceability is also provided as eachigectural design decision describes the
design options considered but rejected, concretmasios to be satisfied, and model of
architectural decision attached as design artif@tewn in Figure 7). Additionally, revisions
to architecture design decisions and reasons goedbfor later review. Architecture design
decisions are time stamped and annotated with ¢goésidn maker’s details, which can be
used to seek further explanation for an architettdesign decision. Hence, we believe that
PAKME supports the description of an architectuesigh decision in ways suggested in [9,
44] and the attributes and relationships proposefll8]. Figure 8 shows that a user can
establish several types of relationships amongitaatiire design decisions.

12

) hipergate :: Add Architecture Decision Relation - Microsoft Internet Explorer... g@

Add Architecture Decision Relation to Create parameter file

Possible Relationships | Constraing

Architecture Decisio

Forb\ds(Echudes)
Enables
Subsumes
Conflicts with
Ovwerrides
Comprises(in made of, decomposes inta)
Is Bound Ta (strong)

Iz an Altemative 1o

s Related to (weak)

Figure 8: Types of relationships that can be estaished

4.2. Supporting knowledge use/reuse

This section describes various ways in which PAKEilitates architecture knowledge
use/reuse. Let us first consider how PAKME supptirésreuse of design options in making
architecture decisions. Figure 9 shows that thera four steps process of reusing design
options, which are captured as cases.

This process starts when a user has a new requiteim® needs architectural support.
Such requirement would characterise a quality goal would have been specified using
concrete scenario. In order to satisfy that requéngt, an architect needs to make a new
architecture design decision. To address that reopgint, the architect would then have two
options:

Search and retrieve a previous design option flmrkhowledge repository;

Create a new design option to solve the given problFor a new design option, the
architect would also need to document the rationale

Software
Architecture
Requirerment l

Retrleve De sign

D ecision

ey Architecture Eati |
Decision needead \7 ationale

Retrieved

== arch Design Decisain
Zase

Hlace new Design
Decision CTase into
repository

Store
Update the modified
Design Decision
Case

@ [Fieie=iim

FAadify a Design
Deci=on Case

Frnowledge
Repository

D esign
Decision

Caos oS

[=R
Design Decision

(e]

Architectur e
Reqguirement

LArchitecture
Decision
made

R eXiSe]

Architecture
D ecision
Rationale

Figure 9: Process model of reusing design options

13

If the architect decides to search through the Kedge repository for cases of design
options, he/she can perform a search to retridig af design options. Figure 10 shows that
a user can build a very complex search string basedrious attributes. After reviewing the
retrieved list of design options, the architect e#ther reuse an existing design option in its
original form or modifies it according to the cumteontext. Figure 11 shows that a retrieved
design option can be used/reused by attachingaih tarchitecture design decision. If a design
option is modified, it is considered a new desigiian but it is linked with the original
design option for traceability. This new designioptcan be chosen as an architecture design
decision through attachment.

Design Option Search and Listing for Web Tier [a]

Search Criteria:

Keywords ta Search for: |Performance -_ Application Type: _.ﬁnance _v
or: |scalahbility Project Domai: “Enterprise JavaBeans System v
| or: Throughput , Design Optionis: [] Used , [Considered
|| Display Result Sort by: |Application Type Domain v Search E
z All Design Options (unsorted) o
! Unused Design Options (only)
L 5 3 Percentage hMatch B
The following Design Op A anlication Type Domain P ecision b
Project -~ [
.) Murnber of occurrences used in Architecture Decisions . | } Delete .
[Design Option Show Selected Application Type Domain {only) ption Inspire New Option 2
]
El
List all Design Options OR Add New Design Options Ed

Refresh

*Delete function will only remove the Design Option from the considered hist, not from knowledge database.

Figure 10: PAKME's interface for searching design o ption cases that can be used in
architecture design

To demonstrate the other ways of reusing architeckmowledge with PAKME, let us
consider that an architect needs to design a seitaichitecture for a new application that
should satisfy certain non-functional requiremenidie architect is likely to make
architectural decisions using a common processdenstanding the problem, identifying
potential alternatives, and assessing their vigbilihere are a few ways PAKME can support
this process. The architect can search the reppdito architectural artefacts that can be
reused. For example, he/she can use a particuldityqattribute (e.g. performance) as a
keyword to retrieve general scenarios that charaet@erformance. The architect decides to
instantiate those general scenarios into concretdonmance scenarios. These general
scenarios can also help the architect to idenhigy patterns that can be used to satisfy the
performance requirements. Moreover, those genemlasios can also lead the architect to
identify a reasoning model that should be usednalyase architectural decisions. In this
process, the architect can use different sear¢hriEsaprovided by PAKME.

14

Ei:. P il o Dierstgen Dption Listing

Mcrong

= 1 hipergate :: Design Option Search - Microsoft Internet Explorer E|@|E|
SETVICE. |TIWE -}
Introduce a dedicated serveras a
Design Option Search and Listing for ™| database service provider, This
Database Server reduces the workloads on other 1 BCS Project rescarch 100 % Moddy | O
Search Criteria systems and offers a centralized
database. fmore.]
Keywords to Search for Have a dedicated Applcation Server
OR e ‘to provide application sepvice to the
OR Apel Sty chents. Hence reduces the workload
to other parts of the system. [more_ |

0 Nope Neme 100 % Modiy | &

Display Results end Sort by, | All Design Op Introduce different semvers to provide

h Miultiple Server different services for the chent. Hence

Svstern would greathy reduce the workload
the cumrent servers [more

Number of Results found from search 15

Design Option Name
Mukiple Backup To gFow muipe o] [siac] cancii |
Single Backup T allow caly cne
A method that utikzes both the Chent and Server to backup certam parts of the

= Madihy
oS B A ety Sttt Hiedcs, fhe datais Ectibated th puliple looatsacs, [ore.] oty Delete
AppEcation Serv Have a decicated Application Server to provide application semvice to the cheni<. Hence Maodify Delete

reduces the workdoad 1o other parts of the system. [more . |

List ofl Desien Options
Add New Desgn Options

Figure 11: Attaching a retrieved design optiontoa n architecture design

The architect may decide to find out if similar plems have been solved in other projects.
He/she can browse through the existing projectsifailar problems. Having found a similar
project, the architect can retrieve the architextdesign decisions taken, design options
considered, rationale for choosing a particulaigtesption, tradeoffs made, and findings of
architecture evaluation. Such information can h#ip architect to decide whether the
architecture decision can be reused or not andrmaeh tailoring is required. Additionally,
project-specific knowledge can also help designdeselopers and maintainers to better
understand the architectural decisions, their caimts and reasoning behind it. Availability
of the reasoning behind the design decisions haalgsitects to explain architectural choices
and how they satisfy business goals [9]. Such kedgé is also valuable during
implementation and maintenance stages.

4.3. Support for design and analysis methods

In order to understand how PAKME can support ai@aler method of architecture design
and/or analysis. Let us consider PAKME's use in tlmatext of a generic model of
architecture design recently proposed by Hofmeisteal. [34]. This model has three main
activities: architectural analysis, architecturghtbesis, and architectural evaluation. We
believe that PAKME can be helpful in all three witiés of this generic design model. For
example, architectural analysis is aimed at efigitarchitecturally significant requirements
(ASRs), which are usually characterised by concestenarios. PAKME provides several
hundreds of general scenarios (as shown in Figyrevtlich can be concretised to specify
guality attributes for a given system.

Architectural synthesis intends to identify candédarchitectural solutions that address
ASRs elicited in the architectural analysis activRAKME provides a repository of generic
design options, and architectural and design pettérat can be examined and assessed by an
architect to compose an architectural decisionstdipring existing design options, or

15

selecting suitable styles, patterns, or tacticsbiwitding new design options. Architectural
evaluation attempts to ensure that the architelctig@sions used are the right ones. PAKME
can support architecture evaluation in several wiags example, if a method like ATAM [4]
is used for evaluating software architecture, PAKpHavides different features to supports
several activities (such as generating utility trelentifying suitable reasoning framework,
recording evaluation findings, and building resuit®e to visualize risks and risk themes) of
this method. During software architecture evalugtiarchitecture knowledge captured by
PAKME helps assess the suitability of certain patfein the proposed architecture by
matching the required concrete scenarios with teeemal scenarios extracted from the
patterns used in the architecture as described5h Moreover, PAKEM helps evaluation
team to capture findings from analysing architeetdecisions and justification for those
finding. Figure 12 shows one finding from evalugtone of the architecture design decision.
It shows the concrete scenario, proposed archreeckecision, design option used, ranking of
the decision relative to other proposed decisians, any associated documents. Apart from
temple-based presentation of findings, PAKME alspagates PDF-based reports of findings.

=3 hipergate

:: Wiew Finding - Microsoft Internet Explorer provided by Desktop ... E@@ i

View Finding

Concrete Scenario

Architecture
Decision

Chosen Design
Finding Description

Complied

Ranking

Documents

Simulation contraller

Create parameter file

Euld the graphical parameter file front end

A risk that emerged firom the ATAT was that there was no
capability to configure parammeter files easily and consistentls.

Comphed
4

File Name

Created By
A drministrator

Justification. dac

=

Figure 12: Evaluation findings captured in PAMKE

PAKME also provides template for capturing rati@nahderpinning decisions as required
by the three main activities of the generic mod#d]] Moreover, provision of design,
analysis, and realization knowledge is consideredriical input to the design process
proposed in [34]. PAKME provides several types e$ign and analysis knowledge such as
general scenarios, generic design decision, styjesterns, tactics, and analytical
frameworks.

Apart from supporting well-known methods and apphss incorporated into the generic
model of architecture design as discussed in thavigus section, PAKME’s provides
architectural knowledge management support to aéwdrthe ten techniques proposed in
[35] for the SEI's methods for architecture analysind design. For example, PAKME
provides several templates to capture informatioring architecture analysis. Provision of
suitable templates is important for making a metbodsistent across evaluators. Templates
also help in consistently gathering and documentirfgrmation that is useful for the
stakeholders [35]. The use of quality attributense®s is one of the core techniques for
SEI's methods to characterize stakeholders’ corscéfBeneral scenarios” are used to aid in

16

the elicitation of “concrete scenarios” using a patt framework as described in following
paragraph.

PAKME provides a repository of domain-specific gethescenarios (Shown in Figure 3
and 15) that are used to steer the process of @f@ugl concrete scenarios; PAKME also
provides a template to capture the concrete saenarihis template is based on six parts
framework proposed in [33] but it only utilizes foparts (i.e., stimulus, source of stimulus,
context, and response). Moreover, PAKME also hstpkeholders to structure and prioritise
concrete scenarios using techniques like utilig tas shown in Figure 17. Explicit elicitation
of architecture documentation and rationale in ddatized views is another important
technique to support architecture analysis andgdeld5]. PAKME supports the elicitation
and capture of rationale for design decision byigliag a template build upon the elements
of design rationale reported in [9, 41]. Additidgaltemplates have been implemented to
describe architecture decision at various levelalsftractions and each design decision may
be composed of architectural or design patterns tanotics, which are represented using
templates proposed in [4, 6]. We have already dsed how PAKME can support different
activities of architecture evaluation using SEFshatecture evaluation ATAM in the context
of the generic model of architecture design.

5. Trialing PAKME

To demonstrate the use of PAKME for capturing ananaging architecture design
knowledge and rationale for improving the softwarehitecture process, this section reports
on an industrial trial of PAKME in the military nggn system domain. This trial is a part of
a research and development collaborative projestgbearried out by the National ICT
Australia and the Defence Science and Technologyatsation (DSTO), Australia. This
collaborative project is aimed at exploiting thechatecture evaluation technologies
developed by NICTA for improving DSTO’s capabilgien evaluating architectural risk
during system acquisition. The case study repdrerd was undertaken to tailor and deploy
PAKME in one of the divisions of DSTO for codifyirgnd managing process and domain
knowledge of evaluating software architecture.

5.1. Organisational context

DSTO is a research and development organisatiorchvgrovides scientific and technical
advice on the acquisition of materiel to the AustraDefence Organisation (ADO). One of
the key responsibilities of DSTO is to evaluate &=y for Proposal (RFP) responses from
tenderers to identify technical and project riskseach proposal. The Airborne Mission
Systems (AMS) division of DSTO is responsible fwalgating software architectures for
aircrafts acquisition projects. AMS is requireduiederstand and organise large amount of
architecture design knowledge for a mission systeanthitecture to support the evaluation
process. Currently there is a lack of a rigorouscess for evaluating architectures. The
architectural evaluation mainly relies on the damknowledge of local experts. As the
modern mission systems are increasingly becominge meliant on software, evaluating
proposed architectural solutions has become muale ingportant as the software intensive
projects are historically considered the most pstne in the Defence domain [45]. Hence,
there has been growing recognition of the impomanicsystemising architecture evaluation

17

architecture evaluation processes within Defence.

Recently, AMS’s technical leadership has becomeesmsingly interested in building its
capabilities in systematically evaluating systentd aoftware architectures and managing
architecture knowledge for aircraft mission systeHsnce, AMS has decided to improve its
architectural evaluation practices by codifying @edsing an architecture evaluation process,
architecture design knowledge, and contextual kadge. This is expected to be achieved
through the use of a tool like PAKME that can h&MS to capture and manage architecture
knowledge.

5.2. Trial's objectives

This trial was a part of an ongoing collaboraticetvieen NICTA and DSTO aimed at
improving AMS’s architecture evaluation capabiltieby capturing and managing
organisational knowledge concerning system arclutecevaluation and processes. It is
expected that the use of an architecture knowladgaagement tool will systemise the
process and help organise the architecture desigmvikdge and contextual information
required or generated during a software architeatwraluation process.

This objective is expected to be achieved by emigddPAKME in the software
architecture evaluation process. A simplified ilfaton of how PAKME has been embedded
in the AMS’s architecture evaluation framework wn in Figure 13. Once integrated in
the evaluation process as shown in Figure 13, PAKMIpports several architecture
evaluation tasks. For example, it helps build dyatodels using scenarios (abstracts and
concrete), reason about the suitability of varidesign options proposed by contractors,
capture the rationale for ranking, approving, ojeetng various design proposals, and
centralise architecture design knowledge.

=Verification

Architecture Design
ry

Tool: PAKME
Analytical Model /
. R :
_ Specification Define —» Scenarios Design Tactics Fr:;:gvljflc?ri
A Patterns
A / \
Problem - Desired Quality Quality Attribute
Description. | Quality Define ' Attribute Measures and
Measures Risks

Figure 13: AMS’s software architecture evaluation p rocess supported PAKME

Regquirements: Architecture

*Functional Description

Although knowledge management initiative requireasiderable time and resources, it is
anticipated there will be considerable time and sasings in the long-term [46]. DSTO and
NICTA have also identified several benefits fromnaging architecture knowledge during
architecture evaluation for Defence acquisitiorm8®f these benefits are:

» Capture rationale for architecture decisions

18

* Help build architectural capabilities

* Improve architectural reusability

* Provide an audit trail for TRA findings

* Reduce demands on subject matter experts

* Encourage best architectural practices

* Improve efficiency of architectural processes

« Accelerate the training process of new employedsinvthe organisation

5.3. Tailoring PAKME

PAKME provides a generic solution to address thehitgecture knowledge management
issues during the software architecture process.déesigned to help users access or capture
architecture knowledge required or generated dursgjtware architecture design,
documentation, or evaluation activities. Hencejeeds to be customised depending on the
organisational requirements and role in the so#vaachitecture process. For example, AMS
does not design or document architectures. Rathewaluates architectures proposed by
contractors. Thus, it needed features of the toat $upport software architecture evaluation
tasks.

Therefore, there was a need to customise PAKMEstdigporting the AMS’s architecture
evaluation process. Initially analysis of the AM@ocess also revealed the need for extra
features and certain modifications to fulfill theguirements of the Defence environment. In
order to identify the requirements for tailoring IRME, a workshop was held. During this
workshop, staff organisations collaboratively idiged the initial set of requirements, which
needs to be satisfied by PAKME to be applicabl&lS’s architecture evaluaiton process.
In addition to the requirements gathered duringvibbeksop, AMS also generated additional
set of requirements. All the requirements were giised as high and low priority based
their importance to the AMS’s process needs. Thgh hpriority requirements were
implemented in the current version of PAKME. Sonfetlee high prirotiy requirements
implemented for tailoring PAKME are:

» Classification of project data according to thdddee classification scheme

* Mechanism for recording compliance of architectalecisions with respect to
requirements

* File-based report of findings

» Store and evaluate different tenderer’s proposalshfe same set of scenarios within
the one project

Some of the lower priority requirements, which beeng implemented include:

» Different levels of access to project data basetherDefence security scheme

» Ability to import/export data from the tool based @ classification code

* Risk management scheme for ranking design decisions

* Integration with requirements management and achite modelling tools.

Both organisations have been equally participatingiloring and enhancing PAKME for
AMS’s needs. NICTA’'s researchers and software eregs have been refining and
implementing requirements. Whilst, AMS’s staff meardb are testing the need features and
reporting the bugs and errors back to the NICTAgam. In tis process, AMS has also

19

identified sevearl new requirements, which are etgueto be included in the next phase of
enhancing PAKME.

5.4. Project Description

In order to assess the use of PAKME for supportirgg AMS’s architecture evaluation
process, a study was carried out within the AMSrenvnent. This study involved using the
PAKME for capturing and managing architecture kredge to support architecture
evaluation of an aircraft system. This study haanbeonducted as a post-mortem analysis of
the architecture evaluation conducted without usR®KME. This study was aimed at
investigating how the introduction of PAKME coul@lp capture and manage architectural
knowledge and whether or not the evaluation processproved by using PAKME. Both
organisations realised the need and importancesigding and conducting such a case study
before deploying PAKME in the AMS’s future evaluatiprojects.

A number of quality factors were chosen as meadrethe mission system architecture
evaluation process. The evaluation process invoD&3 O analysts comparing alternative
design decisions from multiple hypothetical tenddrs simulate the type of evaluation
completed during the real evaluation of an airceaffjuisition project. The evaluation was
performed by measuring each scenario against thbtyjattributes as well as assigning a
measure of risk to the design solution. Some ofkie architectural requirements of the
system under evaluation included:

* An open system architecture

* Object-oriented software design

* POSIX-compliant layering

* Open standards-compliant

* Secure, open, and scaleable interfaces

» Hardware and software portability

» Support hardware and software failure detectiaiatson, and recording

* Localisation and confinement of the effects of desthanges and failures
* Provisions for adding more processing capability

» Data assurance and protection

5.5. Use of PAKME’s knowledge base

PAKME’'s generic knoweldge base repository has bgewpulated by generic
architecturally signficant artefacts such as gdnewenarios, quality attributes, design
options, design patterns, tactics, and analysisetsodvost of the generic architectural
knowledge comes with PAKME is more suitable to gmiee systems as such knoweldge has
been captured based on the NICTA's experience am diomain. For example, Figure 14
shows a general scenario, which has been extrérctedthe data access object pattern using
the pattern-mining process.

20

-2l hipergate :: View General Scenario - DAD-55 - Microsoft Inter... E|@|E|

View General Scenario

Name DAaC-25
Description | System shall mimmize data access code redundancy.
Source Pattern
Status Liccepted
E““’ Fri 28 Jan 2005 11:27
ntered

Pattern Drata Access Obiect

Figure 14: a general scenario distilled from a patt ern

To populate the PAKME'’s knowledge base with the A8/&main knowledge, AMS and
NICTA held a workshop in April 2006 involving NICT# researchers and AMS’s domain
experts. During this workshop, participants coredtd a preliminary domain specific quality
model for software architecture evaluation of A Mission Systems (AMS). This quality
model is based on ISO 9126 [47], SEI defined aiteb, and AMS domain experience. The
quality model involves identifying key quality abutes to enable evaluators to assess the
potential risks of architectural designs againstréquirements.

fle Edt iew Favorkes Tools Help Agdress | &] httplocalhost 5080 peallaboration]pe_k_gscenario_listing jsprselected subselorta=2tal hel :V;‘Gu Horton Internet Securty @~ *
@aa(k il) \ﬂ @ _;“ /V'SEar(h if\‘;*Favnntas @ - 7 __} 7 Links @) Google @] G Bank &)] Bureau of @] Hotmal &) aFL E]NRL .
(hi pergate) B Queries“‘@ Help |

v2i,
e

Home | Knuw\ed_ge-Based [» Pru;ed-Based | Search
Homme Select Project Select Artefact Repart
Home || Ganeral Scenaria Concrete Scenario ASR Quality Factor Architecturs Decision Design Option Finding

General Scenario Listing of AMS Project 1
% New 3 Delete

Proposed General Scenarios

[+ Accent Reiect % [Hame [] | gearch 9 Discarg Show ‘_2005'{\ results

18 Name 18 Description FSource 28 Date Entered Logs v 4
An unexpected event internal to the system occurs. The system must record the event,
: -
Beliabliy. Avaiabily natiy the useriother systems and be available witin & speified period UserDefined un 17 Dec 2006 2318 = 0
The userwishes to introduce new hardware to the system. The system has to ensure
i 3
Portability - Adaptability madifcation without aiacting ather functionaliy: Usar-Defined Sun 17 Dec 2006 2318 a O
A periodic event from an independant source arrives atthe system under normal
S S conditions. The system has o process the eventwithin 3 specified latency. UserDefineg SUTEer2)b 23] = 0
2 An unidentified user tries to access the data/services on the system. The system has to
ty- i) 3
ST lock 2ccess 1o the datafsenices unfihe user s authentiated. ol AHRTEDRERIR e = O
The userwants to operate the system efiiciently. The systemn has to provide an interface
Usability - Operahility to support efficient navigation within the screen and allow multiple simultaneous User-Defined Sun 17 Dec 2008 23:24 a El
acthities
- The developer wishes to upgrade software to add new functionality. The system hasto
ty- 8
e incorparate the change within the specified amount of costiefort DeerDeinRg SUITE e dI0R 226 = o
Accepted General Scenarios
T8 Name 18 Description $Source 28 Date Entered Logs o
Rejected General Scenarios
15 Name & Description B Source {8 Date Entered Logs ¥4
@ 8 Localintranet

Figure 15: General scenarios captured by PAKME's re pository

21

The qulaity model consists of into six quality ditrites:
Performance
Reliability
Usability
Maintainability
Functionality
. Portability

The quality model has been created in PAKME's répos for use by any AMS staff.
PAKME'’s repository also has been populated withegahscenarios for characterising each
of the quality attribute included in the quality deb. These scenarios have been developed
and structured using a scenario development templiadvided by PAKME. This template
has been designed based on the scenario develofrae@work proposed by Bass et al in
[33]. The general scenarios stored in PAKME aredusegenerate concrete scenarios for
different evaluation projects of AMS. Figure 15 wisothe general scenarios captured in
PAKME to characterise a quality model for AMs.

oukwnpE

@ hipergate :: View General Scenario - AMS-03 - Microsoft Int... g@@

View General Scenario

Name ANE-03

The ruddleware shall ensure portability across hardware
technology msertions.

Source User-Defined

Description

Status Accepted

Date
Entered

User Andrew

Fri 29 Sep 2006 13:32

Figure 16: A user-defined general scenario

Figure 16 shows a general scenario for a geneigsiam system architecture used in this
case study. PAKME’s repository has also been pdopdlavith Defence specific general
design options. These design options have beerureabfrom the architecture solutions
proposed for the system reviewed for this caseystddlS’s domain experts, and case
studies on avionics systems reported in sources[88, 48]. Each design option has been
captured as a design decision case as shown imeFgurhese generic design options are
used as input to design decision making or evaloaprocesses. The data captured in
PAKME for this study have been sanitised of thesgame and classified information about
the aircraft system.

5.6. Use of PAKME’s project base

PAKME's project base knowledge repository is useddapturing and managing project
specific architecture knowledge such as qualitytdis; concrete scenarios, architecture
decisions, rationale, and findings of evaluatinch@ecture decisions. For this study, AMS’s
team create a new project in PAKME and populategrbject-base with the project specific
quality model to specify quality factors with coet¥ scenarios based on the general
scenarios of the AMS'’s general quality model. Fegi7 shows a utility tree of the concrete

22

concrete scenarios that characterise quality fagoowth, security and adaptability for this
project.

Each architecture decision proposed by differemtre@tors for satisfying required
scenarios of the project was identified and entemenl PAKME. Each architecture decision
has been linked to the concrete scenario thatpecatgd to be satisfied by that architecture
decision. An example of a design decision affectamghitectural quality is the use of a
layered architecture including an isolation layerréduce the impact of change, and thus
improving flexibility, technology refreshment ancowth capability. This architecture design
decision has been stored in PAKME along the rateonBach architecture decision of this
project has also been captured as a design optitreigeneric knowledge base of PAKME.
AMS’s team has also captured several design opti@s®d on their domain knowledge.
During architecture evaluation, each architectuesigh decision has been assessed with
respective to the design options, which are expecisatisfy the same concrete scenario.

= 1 hipergate :: Utility Tree for AMS Case Study - Microsoft Internet Explorer

Eile= Edit i Faworites Tools Help o
P sack ~ > | Ex= Pl | SO search 'y Favorites £2) | [digs] -] @1
Address | & htkpi/flocalhost:S0s0/poollaborstion/pc_pb_report_utility_tree. jspPselected—Tasubselected—2aelome ~ | So Links **

Ch'i pergate) Sueries E Help | cisconnect [=]

w2 = - s
[Ealaborative | Contadct T Praject T centent | Corpaorate | Projesct B

| EooaRs | TGt |Mahagement | Manadsment | Productiorn: || Library | Collaboration | = 2nigtimation

Home | Knowledagse-Based | » Project-Based | Ssarch

Horme Selsct Project Select Artefact Report
Home WEHEYE Tresl Result Tree Architecture Decision Table NMiewer Architecture

Urtility Tree for AMJS Case Study

Utility Tree
E Performmance
E Sealability
= Reliability
El Fault Tolerance
= DIaintainability
= Growth
= The desiogn of the mission svstemn processing domain nses widely nsed
comfisuration techniques to enhance maimtaimability. [Me dinn], [VEe dina]
El Testability
E Functionality
El Safety
=l Security
= The mission systein processing domain provide s the appropriate levels of

data assurance and protecton tloouch a combimation of policies and

mechanisias. [IvIedinn], [IHhch]
E Imteroperability
=1 ITsability
=l Portability
= Adaptability
= The mmission systein middleware enswuwres portability acyross havdwsare

technoloey insertions. [High], [High]

=] wd Local inkranst

Figure 17: A utility tree for the case study

Having populated PAKME with the project specifichitecture knowledge, AMS’s team
evaluated the architecture design decisions prapdee an aircraft system by several
contractors. For this evaluation, AMS’s team usé&KME for accessing the architecture
knowledge required for the evaluation and captutiregfindings and rationale for evaluation
decisions. AMS’s team used their existing procebsewaluating architecture with one
exception of introducing PAKME in the process asvehin Figure 13.

The architecture evaluation process involved deténm whether or not the concrete
scenario is satisfied by the proposed architectigeision. If there were more than one
proposed architecture decision for a scenario,it@atire decisions were assigned a ranking

23

based on the evaluator’s opinion about each aathite decision’s capability of achieving a
certain level of required quality factor. Evaluatataptured their findings in PAKME'’s
repository. Each finding describes whether or naegain architecture decision complied
with the relevant requirement, its ranking, andorale /justification underpinning the
finding. Based on the evaluation findings, arcliitee decisions were categorised as risk and
non-risks. Risks were further categorised undeoua risk themes.

Figure 18 shows a report of the findings of thel@ataon carried out using PAKME. This
report shows each concrete scenario and its assdcachitecture decision and findings.
Apart from the browser based reporting, PAKME ajsmerates PDF reports for evaluation
teams and management.

“Zh hipergate :: Report of Evaluations - Microsoft Internet Explorer =

Report of Evaluations

ANIS Case Study

cs AD
Functionatite-01 Mission Systern Securit The mission systern processing domain
rovides a ropriate levels of security.

The mission system processing software
design does allow for portability across
Poriabitite:01 Sotterare P oriakiliby hardware technology insedions. Howsver
— amore o o ssment of the level
to which COTS elerments can be
integrat: into the design is reguired
The mission stemn proc ing T (=3
desian allows for @ high level of
maintainability,

Software Maintainability

Miaintainability-01

“ZA hipergate :: View Concrete Scenario - Maintainability-01

View Concrete Scenario

Name Ifaintainability-0 1
The design of the mission system processing domain

Description uses widely used configuration technigues te enhance
maintainabilitsy.

Cuality)
Factor Sirovwih 2R hipergate :: View Design Option - Software Maintainabiity Design - ... [[= |[3)[5)
Complexity Eo o View Design Option =S
Leve J
Importance e diam =

Name Softwrare Maintainabiity Design

The use of POSIE{ as a kernel nterface also improwves the
maintainability o the middleware. & POSID{-based kernel
interfae enables the consideration of a COTS implementation of

Description

the kernel
MNotes TBID
Rationale [riew =

Figure 18: Reports of the evaluation case study

5.7. Challenges and observations

Customising PAKME for AMS proved to be a challerggitask. NICTA’s team did not
have security clearance to access the architecheieg evaluated by AMS. Nor did they
have domain expertise. However, they had to gaitaicelevel of domain understanding in
order to help AMS generate domain-specific scesaiientify and capture design options
and patterns from architectural descriptions of ¢istems being evaluated, and determine
requirements for customising PAKME. Quality attid&wcharacterisation workshop held in
April 2006 helped NICTA team to understand AMS’sndon and identify initial set of
requirements. During these workshops AMS'’s stadried how to generate and structure
general and concrete scenarios using templategeby PAKME.

PAKME was not designed to classify data for segurgasons. Nor did it handle the
requirement of different levels of access to progata. For the first requirement, we had to
make significant changes in PAKME'’s data structlree other was handled by exploiting

24

Hipergate’s domain and work area concepts for implating role-based security model [24].
Another unique requirement was capturing multiptehdecture solutions proposed for a
single scenario by different contractors. Each doatibn of scenario and proposed solution
needed to have its own findings attached. Agais teiquirement has been satisfied by
modifying PAKME'’s repository structure and interéac

AMS’s experience of using PAKME has been quite enaging. During a simulated
architecture evaluation project, AMS’s evaluatosedi PAKME as a communication and
knowledge sharing mechanism. General scenarios dasign options captured in the
knowledge base helped them in generating concrrasios and understanding proposed
solutions. Having a codified quality model providedl evaluators with the same
understanding of the quality requirements. Morepegaluators found PAKME’s templates
to capture justification for evaluation decisioe aery useful. Overall, evaluators and subject
matter experts found that the use of an evaludtmmework and knowledge management
tool brought added rigour to the evaluation procéss anticipated that the management of
evaluation decisions and their justification usiRgKME would minimize the need for
contacting the evaluator of past projects for exaten.

The modified version of PAKME provides AMS with aeffective and efficient
mechanism to organise and understand large amduwntioitecture knowledge. During this
trial, AMSs’ team have identified several requirenseto further enhance PAKME, some of
them are mentioned in section 6, however, the nurversion of PAKME is suitable for
capturing and managing several types of architatturowledge and artefacts of an airborne
mission system for evaluating architecture.

AMS is more convinced that an architecture knowéedganagement tool like PAKME
will provide them with several benefits outlined isection 5.2 and help them
institutionalising a disciplined evaluation processlight of new mandated role for DSTO in
Defence acquisitions, PAKME will provide AMS withcantralized infrastructure for storing
and revisiting evaluation decision quickly and dgidig the software architecture evaluation
process and practices.

6. Conclusion and Future Work

This research is aimed at improving the effectigsnef architecture-based software
engineering through a knowledge management supp@&thanism. A framework for
capturing and using architecture knowledge andog #AKME, to support that framework
have been developed. This paper discusses varnichisegtural aspects and features provided
by PAKME. This paper also reports on the logiséesl our experiences of tailoring and
trialling PAKME for evaluating architecture of air@aft system. During this trial, PAKME
and the conceptual framework underpinning it hak@ven to be adaptable and useful to
complex domains like Defence. This has been demsatest by successfully tailoring and
trialling PKAME in a Defence acquisition evaluatigetting. Based on the feedback from
AMS’s evaluators, NICTA is more convinced that a<hitecture knowledge management
framework and tool have the potential to help orgmions improve their software
architecture processes and build architecturallmbpes.

NICTA and AMS have planned further trials of PAKM future architecture evaluation
projects. Based on the current trial, following @@me of the planned enhancements to
PAKME:

25

Implementing metrics to measure the usage of tliferent artefacts of architecture
knowledge. Such a feature will provide a feedbamdplto improve the type of knowledge
captured and features provided.

Improving the speed and accuracy of knowledgeaedtiby using the task-based retrieval
techniques.

Integrating PAKME with a requirements managemenot tsed in DSTO domain. Such
integration will provide an effective mechanismrmtaintain traceability from requirements to
scenarios, to architecture design decisions alatigthve contextual knowledge underpinning
design decisions. Moreover, it will also minimizeetduplication of data entry. A similar
integration with an architecture modelling/descadpttool has also been planed.

Acknowledgement— Several undergraduate students helped us buildPhEME tool. National
ICT Australia is funded through the Australian Gowraent's Backing Australia's Ability initiative, in
part through the Australian Research Council. Thethars would also like to thank the AMS branch
members who provided their domain knowledge anerésp to assist in generating the framework
and quality attributes used to tailor the PAKME lttmthe military mission system domain.

7. References

[1]. P.N. Robillard, The role of knowledge in soétse developmenCommunication of the ACM999.42(1): pp.
87-92.

[2]. L.G. Terveen, P.G. Selfridge, and M.D. Longyihg Design Memory: Framework, Implementation, $&ss
Learned Human-Computer Interactiqri995.10(1): pp. 1-37.

[3]. C. Hofmeister, P. Kruchten, R.L. Nord, H. Obkj A. Ran, and P. America, A General Model of &afe
Architecture Design Derived from Five Industrial gkpachesJournal of Systems and Software, Atrticle in the
press 2006.

[4]. P. Clements, R. Kazman, and M. Klein, EvalogtSoftware Architectures: Methods and Case Stugz@2:
Addison-Wesley.

[5]. L. Bass and R. Kazman, Architecture-Based Dmyment, Tech Report CMU/SEI-99-TR-003oftware
Engineering Institute (SEI), Carnegie Mellon Unsigy, Pittsburgh, USA, 1999.

[6]. M. Ali-Babar, |. Gorton, and B. Kitchenham,Aamework for Supporting Architecture Knowledge and
Rationale Management, in Rationale Management fiw@ce Engineering, A.H. Dutoit, et al., EditorQds5,
Springer. pp. 237-254.

[7]. A.H. Dutoit and B. Paech, Rationale Manageniergoftware Engineering, in Handbook of Software
Engineering and Knowledge Engineering, S. ChandapE 2001, World Scientific Publishing, Singapopg. 1-
29.

[8]. T. Gruber and D. Russell, Design Knowledge Begign Rationale: A Framework for Representation,
Capture, and Usd,ech Report KSL 90-4Knowledge Laboratory, Stanford University, Standf United States,
1991.

[9]. J. Tyree and A. Akerman, Architecture DecisoBemystifying ArchitecturdEEE Software2005.22(2): pp.
19-27.

[10]. J. Bosch, Software Architecture: The NextgSteuropean Workshop on Software Architecia@04.

[11]. F. Pena-Mora and S. Vadhavkar, Augmentinggiegatterns with design rationalgrtificial Intelligence for
Engineering Design, Analysis and Manufacturit§97.11: pp. 93-108.

[12]. A. Jansen and J. Bosch, Software Architecasra Set of Architectural Design DecisidAmceedings of the
5th Working IEEE/IFIP Conference on Software Arebiitire 2005.

[13]. P. Kruchten, P. Lago, and H.V. Vliet, Buildiup and Reasoning about Architecture Knowledge,
Proccedings of the 2nd International ConferenceQurality of Software Architecture2006.

[14]. M. Ali-Babar, B. Kitchenham, P. MaheshwamdaR. Jeffery, Mining Patterns for Improving Aragting
Activities - A Research Program and PreliminaryesssnentProceedings of the 9th International conference on
Empirical Assessment in Software Engineer2@05.

26

[15]. M. Ali-Babar, I. Gorton, and R. Jeffery, Caphg and Using Software Architecture Knowledge for
Architecture-Based Software Developmépripceedings of the 5th International ConferenceQurality Software
2005.

[16]. T.R. Gruber and D.M. Russell, Design Knowledmd Design Rationale: A Framework for Represgntin
Capture, and Usd,ech Report KSL 90-4Knowledge Systems Laboratory, Standford Univer€ialifornia,
USA, 1991.

[17]. A.P.J. Jarczyk, P. Loffler, and F.M.S. IlleBign Rationale for Software Engineering: A SunRnpc. 25th
Hawaii Int'l. Conf. on System Scienc#&892.

[18]. L.G. Williams and C.U. Smith, PASA: An Archittural Approach to Fixing Software Performance
ProblemsProceedings of the International Conference ofGloenputer Measurement Group002.

[19]. G.J.B. Probst. Practical Knowledge Managemartiodel That Works. Last accessed on 14th Ma2€i@5,
Available from:http://know.unige.ch/publications/Prismartikel.PDF

[20]. I. Rus and M. Lindvall, Knowledge ManageménSoftware EngineerindEEE Software2002.19(3): pp.
26-38.

[21]. V.R. Basili and G. Caldiera, Improving SofteaQuality Reusing Knowledge and Experieri8i®an
Management Review995.37(1): pp. 55-64.

[22]. V.R. Basili, G. Caldiera, and H.D. RombackeTExperience Factory, in Encyclopedia of Software
Engineering, J.J. Marciniak, Editor. 2001, Johné&y/i& Sons.

[23]. L. Zhu, M. Ali-Babar, and R. Jeffery, Minirigatterns to Support Software Architecture Evalumtio
Proceedings of the 4th Working IEEE/IFIP ConfereaneSoftware Architectur@004.

[24]. Hipergate. An open source CRM and Groupwgstesn. Last accessed on 16th March, 2006, Available
from: http://www.hipergate.com

[25]. R. Jeffery and V. Basili, Validating the TarResource Data ModdProceedings of thelOth International
Conference on Software Engineerii§88.

[26]. B.A. Kitchenham, R.T. Hughes, and S.G. Linkmiodeling software measurement d&aeftware
Engineering, IEEE Transactions pp001.27(9): pp. 788-804.

[27]. M. Ali-Babar, B. Kitchenham, and P. Maheshiv@he Value of Architecturally Significant Inforrtian
Extracted from Patterns: A Controlled Experimépceedings of the 17th Australian Software Enginge
Conference2006.

[28]. M. Ali-Babar, B. Kitchenham, and P. MaheshiyAssessing the Value of Architectural Information
Extracted from Patterns for Architectifgroceedings of the 10th International conferencécampirical
Assessment in Software Engineefidg06.

[29]. G. Arango, E. Schoen, and R. Pettengill, Adess for Consolidating and Reusing Design Knowdedg
Proceedings of the 15th International Conference&Software Engineeringl993.

[30]. M.T. Hansen, N. Nohria, and T. Tierney, Waatour Strategy For Managing Knowleddé&rvard Business
Review 1999.March-April : pp. 106-116.

[31]. K.C. Desouza and J.R. Evaristo, Managing Kiedge in Distributed Project§ommunication of the ACM
2004.47(4): pp. 87-91.

[32]. M. Ali-Babar, I. Gorton, and R. Jeffery, Tomdaa Framework for Capturing and Using ArchitectDesign
Knowledge,Tech Report TR-0518niversity of New South Wales, Australia, 2005.

[33]. L. Bass, P. Clements, and R. Kazman, Softwachitecture in Practice. 2 ed. 2003: Addison-\&gsl|

[34]. C. Hofmeister, P. Kruchten, R.L. Nord, H. Gty A. Ran, and P. America, A General Model oft#afe
Architecture Design Derived from Five Industrial gxpachesthe 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA 05), Pittsburgh, PSAJ2005.

[35]. R. Kazman, L. Bass, and M. Klein, The essdrtdbmponents of software architecture design auadyais,
Journal of Systems and Softwa?€06.79: pp. 1207-1216.

[36]. B. Skuce, Knowledge management in softwaségte a tool and a tria§oftware Engineering Journgbept.
995: pp. 183-193.

[37]. S. Henninger, Tool Support for Experience-@hSoftware Development Methologiéglvances in
Computers2003.59: pp. 29-82.

[38]. D. Alur, J. Crupi, and D. Malks, Core J2EBtems: Best Practices and Design Strategies. @ng093: Sun
Microsystem Press.

[39]. F. Buschmann, R. Meunier, H. Rohnert, P. Sentad, and M. Stal, Pattern-Oriented Software Asdture:
A System of Patterns. 1996: John Wiley & Sons.

[40]. L. Bass, M. Klein, and F. Bachmann, Qualitiribbute Design PrimitivesTech Report CMU/SEI-2000-TN-
017, SEI, Carnegie Mellon University, USA, 2000.

27

[41]. A. Tang, M. Ali-Babar, |. Gorton, and J. Hak Survey of Architecture Design Rationaleurnal of Systems
and Software2006.79(12): pp. 1792-1804.

[42]. P. Clements, et al., Documenting Softwarehitertures: Views and Beyond. 2002: Addison-Wesley.
[43]. J.L. Kolodner, Improving Human Decision Magithrough Case-Based Decision Aidid,Magazine
1991.12(2): pp. 52-68.

[44]. A. Jansen, J.v.d. Ven, P. Avgeriou, and Dmireer, Tool Support for Architectural Decisiofspceedings
of the 6th working IEEE/IFIP Conference on SoftwArehitecture, Mumbai, Indig2007.

[45]. Defence Electronic Systems Sector Stragio Rta Department of Defence, Australia, Editor. 2804. pp.
97.

[46]. M. Barbacci, Clements, P., Lattanze, A., Koop, L., Wood, W., Using the Architecture Tradeaffalysis
Method (ATAM) to Evaluate the Software Architectdoe a Product Line of Avionics Systems: A Cased$tu
Tech Report CMU/SEI-2003-TN-Q1Rarnegie Mellon Software Engineering Institutdy 2003.

[47]. A. Kamel, M. Chandra, and P.G. Sorenson, dod an Experience-Base for Product-line Software
Development Proces8CM, 2001.

[48]. M.R. Barbacci, P. Clements, A. Lattanze, lartirop, and W. Wood, Using the Architecture Trd€leo
Analysis Method (ATAM) to Evaluate the Software Aitecture for a Product Line of Avionics SystemsCAase
Study,Tech Report CMU/SEI-2003-TN-Q12EI, Carnegie Mellon University, USA., 2003.

28

