Achieving System-Wide Architectural Qualities

Lawrence Chung Eric Yu

The University of Texas at Dallas University of Toronto

Computer Science Program Faculty of Information Studies
P. O. Box 830688
Richardson, TX 75083-0688, U.S.A. Toronto, Ontario, Canada M5S 3G6
chung@utdallas.edu yu@fis.toronto.edu
(972) 883-2178 (416) 978-3107
Facsimile (972) 883-2349 Facsimile (416) 978-1455

System-wide properties such as reliability, availability, maintainability, security, responsiveness,
adaptivity, evolvability, survivability, nomadicity, manageability, and scalability (the “ilities” ), are
crucial for the success of large software systems. Although these properties have been a major concern
of software engineering since its inception, most of the effort on software architecture has focused
on achieving functionality. For example, in current visions of component software architectures
(CORBA, WWW, ActiveX, etc.), there is no provision for systematically achieving system-wide
properties. As noted in the objectives statement of this workshop [WCSA98],

“assembling components and also achieving system-wide qualities is still an unsolved
problem. As long as the code that implements ilities has to be tightly interwoven with
code that supports business logic, new applications are destined to rapidly become as
difficult to maintain as legacy code.”

A Design Space Perspective

Given a requirements description as the problem statement, there can potentially be a combinato-
rially large number of architectural design alternatives as solutions. For example, an architectural
design involves deciding on the number and types of components in the system, the number and types
of interactions, the way data is distributed among components, the way processing is distributed
among components, and so on. Inevitably decisions have to be made on these choices toward a
particular final system architecture. Clearly, the quality of the architecture chosen is only as good
as the decisions taken to arrive at it.

What then is the relationship between system-wide qualities and architectural design? If we
view architectural design in terms of a design space, then the ilities are constraints on that space. If
we view the process of architectural design as the incremental construction of the design space and
the progressive narrowing down of that space towards a “good enough” solution, then the ilities or
system-wide qualities can be held as goals to explicitly guide the generation of alternatives at each
step, and to guide the selection among alternatives throughout the process.

When building systems from components, one needs to pay attention to many system-wide
qualities at the same time, since they can interact with each other in many ways. These qualities
and their interactions must be identified and analyzed for each design decision. For example, in
the absence of any general theories that can relate reliability, maintainability, scalability and a



whole host of other architectural properties, one must consider how each of the relevant qualities
compete with or complement each other as they apply to each particular design option (i.e., each
configuration and choice of components). Many tradeoffs are made as the designer balances out
the many desirable qualities. These analyses and tradeoffs need to be made at each level while
constructing a compositional architecture.

Without a proper conceptual framework to guide the process, and effective tools to support it,
these decisions tend to be ad hoc, haphazard (e.g., over-emphasizing some qualities while overlooking
some other more important ones), unrecorded, and untraceable. The result is software that are full of
implicit design criteria and decisions that are buried in the code, thus making the software extremely
difficult to modify as time goes on.

A Process-Oriented, Goal-Directed Approach

Our research group, starting with Chung’s dissertation [Chung93], have been focusing on a process-
oriented approach to addressing software quality [CNYM98]. The approach is requirements-centered,
noting that quality issues originate from requirements, and that high quality can be achieved by
properly representing quality requirements (also called non-functional requirements — NFRs) and
analyzing them in the context of the intended applications during requirements engineering. This
is a “generative” approach, as it offers support for systematically applying such requirements to
guide the exploration of, and selection among, design alternatives during system design. Putting
system-wide quality requirements up-front as goals to be achieved is especially important during
high-level component design, i.e., in making architectural decisions [CNY95].
In the context of compositional software architectures, this process-oriented approach aims to

e reason about the quality of the whole (i.e., the overall architecture) in terms of the quality of
its parts (i.e., the components), and the quality of the parts in terms of the quality of their
sub-parts;

e accommodate the “subjective” nature of system-wide properties by considering the character-
istics of the intended applications, hence avoiding over-generalization;

e explore the design space and make a rational choice toward a particular system architecture,
while supporting tradeoff analysis;

e make all the design alternatives, decisions and rationale traceable throughout for fast initial
design and subsequent evolutionary redesigns.

The approach is realized in the NFR Framework [Chung93] [CNYM98], in which system-wide
properties are treated as goals to be achieved. During the architectural design process, goals are
decomposed, design alternatives are analysed with respect to their tradeoffs, design decisions are
made and rationalised, and goal achievement is evaluated. This way, system-wide properties serve
to systematically guide selection among architectural design alternatives.

More specifically, in the NFR framework, NFRs (or ilities) are represented as softgoals (which
is based on a “good enough” (satisficing) approach to qualitative reasoning, and which can be
conflicting or synergistic with other softgoals), and relationships between softgoals as contribution
types (both partial and full, as well as “4+” and “-”). Each softgoal is associated with a satisficing
status indicating the degree to which it is satisficed or denied or in conflict. In the NFR framework,
ilities are explicitly represented symbolically in an object-based language

The system-wide ilities of the system and their refinements at various levels of composition are
diagrammatically represented in a softgoal interdependency graph (SIG). This graph helps prevent
the designer from putting a lop-sided, exclusive emphasis on functionality. It therefore complements
other diagrammatic architectural notations which emphasize (functional) compositional configura-
tions or the functional design space.



The graph also helps maintain traceability while avoiding ad hoc, accidental design and unjustifi-
able efforts. During architectural design, every decision can be traceable backward to requirements,
and conversely every requirement can be traceable forward to architectural decisions and designs.
The intention behind this graph thus coincides with one of the goals of this workshop:

“to architect systems so that both functionality and architectural -ilities can be upgraded
over the application’s life cycle.”

The NFR framework further supports the “generative” process with a body of knowledge of soft-
goal satisficing represented as generic methods, a body of knowledge of design tradeoffs represented
as correlation rules, and a graph labeling procedure for propagating satisficing status. The generation
of a software architecture is semi-automated, controlled by a human architect who selects softgoals
to refine, selects methods to apply, extends and tailors the catalogues of methods, and maximizes
synergy and minimizes conflict [CNYM98].

So far as changes are concenred, the NFR framework helps easily and quickly understand changing
needs and propagate — through dependencies of system-wide properties, design alternatives, decision
and rationale — from changes in the requirements to changes in the design [CNY95]. The “ilities”
are explicitly represented and will be manifested in the design and the code, but unlike in legacy
systems, they are not inextricably interwoven into the code.

Our approach emphasizes that a software product is not just the final code at the end of the
development process. Software must continue to evolve so there is no “final” code. The requirements
and design knowledge and decisions leading up to code is as much a part of the product as the code
itself. They must be represented and encoded in a suitable form to support the ongoing evolution

of the product [MBY96].

Status and Open Issues

The NFR Framework has been tested on several classes of systems with a variety of NFRs [CN95].
Adaptation of the framework has also been considered in the context of software architecture
[CNY95], and applied to an initial study of dealing with change in a bank loan system, with the com-
bination of performance and requirements for accuracy, timeliness and informativeness [CNY96]. A
prototype tool has been built to deal with security and accuracy [Chung93], performance [Nixon97]
and some other NFRs.

There still are many open questions, as raised in the topics-of-interest statement of this workshop.
A particularly important challenge in addressing system-wide qualities in software architectures, we
believe, lies in the need to analyze an architecture at many levels of granularity. This requires
an understanding of the “principle of compositionality” that encompasses both functionality and
quality at the same time, 1.e., not only “How is the behavior of the whole related to the behavior of
the individual components?” but also “How is the quality of the whole related to the quality of the
components?”

References

[Chung93] K. L. Chung, Representing and Using Non-Functional Requirements: A Process-Oriented
Approach. Ph.D. Thesis, Dept. of Computer Science, Univ. of Toronto, June 1993. Also
Technical Report DKBS-TR-93-1.

[CN95] L. Chung, B. A. Nixon, “Dealing with Non-Functional Requirements: Three Experimental
Studies of a Process-Oriented Approach.” Proc., 17th ICSE, Seattle, WA, U.S.A., Apr. 1995,
pp. 25-37.

[CNY95] L. Chung, B. A. Nixon and E. Yu, “Using Non-Functional Requirements to Systematically
Select Among Alternatives in Architectural Design.” Proc. Ist Int. Workshop on Architectures
for Software Systems, Seattle, Washington, Apr. 1995, pp. 31-43.



[CNY96] L. Chung, B. A. Nixon and E. Yu, “Dealing with Change: An Approach Using Non-
Functional Requirements”, Requirements Engineering Journal, 1(4), pp. 238-259, 1996.
[CNYM98] L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requirements in
Software Engineering. forthcoming monograph.

[MBY96] J. Mylopoulos, A. Borgida, and E. Yu, “Representing Software Engineering Knowledge,”
Automated Software Engineering, 4(3), July 1997, pp. 291-317. Kluwer Academic Publishers.

[Nixon97] B. A. Nixon, “Dealing with Performance Requirements for Information Systems.” Ph.D.
Thesis, Dept. of Computer Science, Univ. of Toronto, 1997.

[WCSA98] OMG-DARPA-MCC Workshop on Compositional Software Architectures, Monterey,
California, January 6-8, 1998.



