Why Agent-Oriented Requirements
Engineering

Eric S. K. Yu

Faculty of Information Studies, University of Toronto
Toronto, Ontario, Canada M5S 3G6
WWW.cs.utoronto.ca/"eric

Abstract. Agent concepts have been used in a number of
recent approaches to requirements engineering. In view of
the rapid shift towards open, networked, and cooperative
computing, we argue for the fuller development of emerg-
ing agent-oriented approaches to requirements engineering.
Such approaches would address crucial requirements engi-
neering concerns such as functionality, quality, and process,
using agent as the focal concept.

1 Introduction

Agent concepts have been used in a number of recent approaches to
Requirements Engineering (RE). It is generally acknowledged that
the main focus of Requirements Engineering should be on the char-
acterization of the intended system in relation to its environment
[2, 12, 14]. Agent concepts have been introduced in RE primarily as
modelling constructs to characterize active elements in the environ-
ment, usually including the target system. These active elements may
be human or machine, and may contain hardware and/or software.

In this paper, we put forth the position that the concept of agent
should be further developed to serve as a focal, guiding concept in
RE frameworks, much like objects and goals have served as guiding
concepts. The key benefit of having an RE-level concept of agent,
and using it as a guiding concept during RE, is that it will serve
to bring issues centring on an agent together, so that they can be
identified and addressed.

An agent-oriented approach to RE will be of particular interest
for new settings in which there is a high degree of open distributed



computing [13, 17], and in which change is ongoing [6]. In agent-
oriented RE frameworks, crucial RE concerns such as functionality,
quality, and process will be organized around agents so that they will
be addressed in a way which is appropriate for open, distributed, and
constantly evolving environments.

In section 2, we briefly review a few selected RE frameworks in
which agent concepts play a substantial role. In section 3, we outline
a number of issues that need to be investigated in order to further
develop an agent-oriented approach to RE.

2 Agent Concepts in Requirements Engineering
frameworks

We will review briefly the concepts of agent as used in several selected
RE frameworks.

(a) Composite Systems Design and KAOS

A composite system is one that is made up of a number of compo-
nents — or agents — that interact with each other to produce some
overall behaviour. An important premise of the CSD approach is
that in designing an automated system, one should treat the system
and its environment as a (larger) system whose overall properties
are the ones we aim to achieve. The specification of the automated
system should be derived systematically from the desired behaviour
of the overall system. Typically, one starts with global system goals,
which are decomposed until they can be assigned to individual agents
[9, 10].

Agents have capabilities, which means that their behaviour (se-
quences of activities) can be constrained so that desired properties
are satisfied. During the design process, goals are replaced by ‘re-
sponsibilities’ and assigned to subsets of agents. Ultimately, respon-
sibilities are subdivided so that individual pieces are assigned to
individual agents.

KAOS is a framework for goal-directed requirements acquisition
[5]. As in CSD, a composite system viewpoint is adopted. Agents may
be human, hardware or software. The concept of agent is similar to
that in CSD. An agent i1s a specialized kind of object. Like other
objects, it has states and other properties associated with objects.



However, it is also a processor for some actions, and therefore con-
trols state transitions. Unlike other kinds of objects (which include
entities, relationships, and events) agents have choice over their be-
haviour. Each agent has capabilities, which is a list of actions that
the agent can perform. The designer starts with goals for the over-
all composite system, then refines them until they are reduced to
constraints that can be assigned to agents.

Agents can have wishes that are goals, and which may conflict
with each other. Agents have further attributes to represent load,
reliability, cost, and motivation. These are used by the designer in
deciding what constraints can be assigned to what agents.

(b) Albert II

The Albert language supports the modelling of functional require-
ments in terms of a collection of agents interacting in order to provide
services necessary for an organization. Each agent is characterized
by actions that change or maintain its own state of knowledge about
the external world and/or states of other agents. Such actions are
performed by agents in order to discharge contractual obligations
expressed in terms of internal and cooperation constraints [7, 8].

Functional requirements in Albert are expressed in terms of a set
of formal statements. These statements are grouped around agents
in order to define the set of admissible behaviour the agents may
experience. Thus the notion of agent is seen as a way of organiz-
ing the specification so that behaviour pertaining to each (class of)
agent is collected together for readability. Similarly, distinguishing
constraints that are local to an agent from those that relate to other
agents facilitates understanding of the agent’s behaviour.

Agents in Albert are not intentional and do not have goals. The
language focuses on specification, and is not concerned with the ex-
amination of alternatives for meeting goals.

(¢) The F3 framework

The F3 framework (From Fuzzy to Formal) [3] is a framework which
aims to cover a wide range of requirements engineering activities.
An important part of the framework is the “Enterprise Model”. This
model has five submodels: Objective Model, Concept Model, Activ-
ities and Usage Model, the Actors Model, and Information Systems



Requirements Model. These models are essentially ERA models with
entities, relationships, and attributes suitable for each of these subar-
eas. There are also links across these submodels of the overall model.

The approach is objectives-driven, with an emphasis on under-
standing the business objectives behind system requirements. The
Objectives model has nodes for Goals, Problems, Opportunities,
Causes, Rules, and Development-Actions, which are related via Mo-
tivates and Influences links. The latter can be of type Positive, Neg-
ative, or Unknown. The contents of these nodes are informal natural
language statements.

The Actors submodel have nodes that are Organizational-Units
or Roles, which are related via links such as Reports-To, Belongs-To,
Supplies-Software-To, and Develops-System-For. Actors can be hu-
mans, computing devices or other non-human resources. The Actors
model is connected to the Objectives Model via Motivates links, to
the Activities and Usage Model via Performed-By type of links, and
to the Information Systems Requirements Model via Concerns type
of links. The overall Enterprise Model is linked to the more formal
Information Systems Model via Implemented-By and Supported-By
types of relationships.

(d) The ¢* modelling framework

2* is a framework for modelling and redesigning intentional relation-
ships among strategic actors [18, 20]. Tt was developed as a frame-
work to support the early phase of requirements engineering. The
strategic actor is the central concept. Actors have intentional prop-
erties such as goals, beliefs, abilities, and commitments. They are
strategic in that they are concerned about opportunities and vulner-
abilities.

The focus of the framework is in analyzing strategic implications
from the viewpoint of each actor, and to support the exploration and
identification of alternative operational processes (solutions) which
will better meet the strategic interests of the actors. To support
this level of modelling and reasoning, a process is modelled in terms
of intentional relationships among actors, rather than input/output
relationships. Actors depend on each other for goals to be achieved,
tasks to be performed, and resources to be furnished. This is called
the Strategic Dependency model.



The Strategic Rationale model provides a way for systematically
asking why a process is structured the way 1t currently is, thus re-
vealing the goals behind them. These may be revised. New solutions
are then sought for addressing the goals. The solutions are thus re-
designed operational processes which are typically rearrangements of
the strategic dependency relationships among actors, and may also
involve omission of some actors, introduction of new ones, or merging
or splitting of responsibilities.

The framework is not concerned with the detailed specification of
processes and activities, leaving these to a separate part of require-
ments engineering, called the “late-phase”.

3 Research Issues for Agent-Oriented RE

Comparing and contrasting the above RE frameworks raises a num-
ber of issues. These include the ontological status of “agents” in RE
(as opposed to in Systems Design or Implementation), relationship
of the agent concept to other important guiding concepts in RE, par-
ticularly: goals, quality, process, and object, and how agent concepts
can best complement these concepts. Two other important issues
are scalability, and the ability to deal with change. These issues are
discussed in this section.

3.1 A distinctive notion of agent for RE?

In order to clarify the notion (or notions) of agent that might be
useful in RE, one of the central questions is:

Is there (or should there be) a notion of agent that is dis-
tinctive for RE?

For an RE framework to be truly agent-oriented, the identity and
existence of an agent (as a construct in the RE level) needs to be
determined within the RE level, based on RE criteria. This will allow
the process of identifying and delineating agents to produce insights
that will inform the RE process. This is in contrast to doing RE
for an agent-oriented system, in which the identities of the agents
are determined according to Implementation level criteria. If agent
identity and existence are pre-determined, the RE process may not
be benefitting much from having an agent construct.



The desire for ontological independence, however, poses problems
when we want to deal with brown-field situations, where there are ex-
isting agents (whose identity are therefore determined by concrete ex-
istence, i.e., at the Implementation level). Customarily, distribution
is a rather “physical” concept. The term “multi-agent systems” typ-
ically refers to systems which are implemented with multiple phys-
ical components. However, if distribution is an issue that is to be
explored at the RE level, then it needs to be a higher-level “logi-
cal” concept. For example, task forces, committees, project teams,
strategic alliances, are all examples of “logical” agent-like entities in
the context of human organizations.

One approach is to offer several variants of agent notions to
represent different degrees of concreteness. In 2%, the term agent
is used to refer to the concrete, implementable variety, and there-
fore whose identity is determined by physical and implementability
criteria. Roles are abstract. During RE, roles serve as holders of in-
tentionality, so that they can be reasoned about (and reconfigured,
i.e., “redesigned”, within the context of RE) before they are eventu-
ally assigned to agents. A third variant, position, being a bundling
of roles which are typically assigned to an agent as a unit, serves as
an intermediate mapping between agents and roles. Thus one can
reason about the design of a position, independently of its eventual
occupation by some agent. In 2*, the term actor is used to refer to
the generic concept. Agent, role, and position are specializations of
the actor concept. In the rest of this paper however, we will continue
to use the term agent in the more general sense, with the under-
standing that further distinctions such as roles and positions may be
helpful.

A distinctive RE agent can serve as a powerful abstraction mech-
anism — a locus for identifying and addressing issues pertaining to
that agent, and how these issues will propagate to other agents. Since
issues addressed at the RE level are different from those addressed
at the Design and Implementation levels, we believe that a concept
of agent for RE that is ontologically distinct from those in Design
and Implementation is needed.

3.2 Equality among agents?

Another ontological question is:



Should all agents be “first-class citizens”? i.e., should they all
have the same expressive power, or should some be treated
in a more privileged fashion?

In F3, the target system is given a richer representation, in terms
of models for functional and non-functional requirements. The other
actors do not have these models, so that one could not easily express
the “redesign” of these actors during the RE process. In CSD, the
target system to be constructed is treated on a par with other agents
in its environment. They are all components of the composite system.

In ¢*, all agents are equal, because intentional relationships are
among agents in the model. Agents have requirements (functional
and non-functional, the latter appearing as softgoals) on each other.
A multi-lateral characterization of requirements relationships is more
suited to a networked computing environment.

3.3 Agents and Goals

The concept of goal has been found to be a very useful one in RE,
where one wants to deal with choice, and constraints on a space
of possibilities (e.g., [9]). Since it is possible to have agents with-
out goals in an RE framework (e.g., Albert), and also goals without
agents (e.g., the NFR framework [4]), an important question is:

How can agent concepts and goal concepts complement each
other in an RE framework?

In several frameworks, the goal concept dominates over the agent
concept, i.e., the framework is more (centrally) goal-driven than
agent-driven. The agents are more on the “receiving end” of the RE
process. They get responsibilities assigned to them, but they do not
have much say over what they get, since they do not have the benefit
of a full-fledged goal-based reasoning process in order to participate
in the give and take of responsibilities.

In F3, objectives are global organizational business goals, and are
separate from the Actors model. CSD is also goal-driven, beginning
with global goals that are independent of agents. Agents come into
the picture only after goals have been sufficiently reduced. KAOS fol-
lows the CSD philosophy, although the metamodel does allow agents
to have “wishes”, which can be complementary or conflicting, there-
fore it seems to allow agent to participate in goal negotiation from
the start.



In 2*, goals always belong to agents. There are no global goals
(hence the name 2*, which stands for distributed intentionality). Fur-
thermore, goals appear in the structural relationships among agents,
in contrast to the usual input-output relationships in most mod-
elling frameworks. During the RE process, the goal-based relation-
ships among agents are renegotiated. This may result in the shift-
ing of responsibilities from one agent to another, or the splitting
and merging of agents (hence redefining the identities and (logical)
boundaries of agents).

3.4 Agents and Quality Requirements

Quality, or non-functional, requirements such as accuracy, usabil-
ity, performance, security, costs, reliability, etc., must be taken into
account fully during RE. However, unlike functional requirements,
quality requirements are usually harder to deal with because they
are not easily formalized. In goal-oriented RE frameworks, one can-
not easily treat functional and non-functional requirements in the
same way as goals because the classical treatment of goals assume
that there is a clear-cut true/false criteria of success.

For example, in CSD, since the goal reduction process is for-
mal, non-functional requirements such as costs, reliability, etc., are
handled at agent assignment time, using separately attached mech-
anisms. These are used as evaluation criteria to decide whether a
given agent can meet the responsibilities, but not as goals that are
systematically reduced.

The approach is similar in KAOS. However, since global goals
can initially be informal (i.e., not have a formal definition), non-
functional requirements can be mixed in with functional require-
ments, and can be traded off among agents. However, in order for
goals to be assigned as responsibilities to agents, they must be re-
duced sufficiently as to be expressible formally in terms of logical
formulas.

In the NFR framework [4], quality goals are treated systemati-
cally using a concept of satisficing. 2* follows the NFR framework
approach, bringing non-functional goals (called softgoals) into an
agent-oriented framework. Softgoals, like other goals, appear as re-
lationships among agents. Therefore quality requirements, like other
requirements, are relationships among agents (as opposed to relation-
ships with some external global designer). During redesign, quality



requirements are renegotiated between agents. The ¢* framework
therefore offers a distributed treatment of quality issues. This is one
of the areas that needs to be further developed. The WinWin frame-
work [1] links quality goals to stakeholders, and is therefore a step
in this direction.

3.5 Agents and Process

The concept of process is pervasive in systems development and in
RE (e.g., [16]). When there are multiple agents, one needs to have
ways of characterizing the “who” that is involved in a process, and
the extent and nature of involvement. Again, we are interested in
a notion of “who” that is appropriate for the RE-level, so that a
physical notion of agent may not be adequate.

One can distinguish a number of levels or degrees of participation
by agents in the RE process:

1. Passive involvement — An agent is said to perform certain actions
or activities. This may be a description, or a prescription, as in
the assignment of responsibility. The agent is not participating
as an active intentional agent. The agent has no choice.

2. Constrained behaviour — An agent’s behaviour is constrained by
specification, within a space of possible behaviour (e.g., Albert).

3. Design choice — Agents are actively involved in making choices,
and these choices and their criteria are explicitly captured by the
modeller (e.g., KAOS).

4. Design choice and autonomy — Agents are actively involved in
making choices, and the choices and criteria are only partially
available to the modeller (e.g., 2* )

There are also different kinds or “levels” of process:

1. the operational process — This refers to the processes that are
executed by agents during “run-time”, in the “usage-world”[15].
This is the “business process” in the target environment. An
example is the “lives” of agents in Albert.

2. the design process — This refers to the processes during RE used
to decide what the operational process shall be. This 1s not to
be confused with processes in the Design phase of system devel-
opment. An example is the goal decomposition process in CSD

or KAOS.



3. the methodology — This refers to the collection of coarse-grained
process steps that make up the RE methodology. Tt prescribes
how the different kinds of RE activities interact, and in what
sequence. For example, in CSD, one starts with global goals.

In 2*, the boundary between the operational process and the de-
sign process is not methodologically pre-determined. Any part of an
operational process can be “reflected up” into the design process. The
operational process, as described by a Strategic Dependency model,
may still contain goals. In contrast, in most other approaches, the
operational process is described in terms of actions or activities (i.e.,
all goals have been fully reduced). The ¢* approach allows agents in
the domain to decide the degree to which goals need to be resolved
during the design process, leaving unresolved goals to be addressed
during the operational process.

Given these various approaches to the treatment of relationships
between agents and process (behaviour), and between action and
reflection, there is much room for further investigation.

A related area of much interest in RE is that of scenarios. A
scenario can be seen as a single instance of a process. How agents
participate in scenarios — to what degree, and in what combination
of action and reflection — are also important issues to investigate in
an agent-oriented RE framework.

3.6 Agents and Objects

In order to do modelling, one needs support for dealing with a large
body of knowledge involving numerous objects. Conceptual mod-
elling frameworks such as Telos [15] provide knowledge structuring
mechanisms such as classification, generalization, aggregation, and
time to help organize knowledge along various dimensions.

How agent concepts interact with these dimensions needs to be
further investigated, given that the intentional dimension of agents
may bring different ontological and epistemological assumptions. For
example, most frameworks treat agents as specializations of objects.
However, if agents are intentional, the implications of inheriting in-
tentional properties is not so clear.



3.7 Agents and Change

In many environments, it will be important to be able to deal with
ongoing evolution [6]. The agent concept in RE may provide a pivotal
point for organizing knowledge in the presence of change, because
agents are often the originators of change [11]. However, it is not
clear which i1s more stable: processes, global goals, agent goals, agent
identity, or variants of agents such as roles, positions, or material-
ized agents? Questions of stability are also relevant when considering
potential for reuse.

3.8 Scalability

In realistic settings, the number of agents that are potentially rele-
vant could be very large, or, in the case of network computing, prac-
tically infinite. In frameworks that rely on the use of global goals, one
needs to have some criteria for delineating the global system before
applying the framework.

In 2%, all goals are goals of particular actors (although an actor
can be an aggregate such as an organization), and their implications
are assessed via propagation over a network of dependencies. There
is no reliance on predefined global boundaries. The premise is that
the scoping criteria need to be contingent on the strategic interests
of the actors, and therefore cannot be stated a priori. The scope
of relevance needs to be determined via an analysis of the strategic
dependencies of the actors. One implication of this is that the frame-
work allows the scope of relevance to be different for each alternative
solution considered during the RE process.

3.9 A single unified agent concept for RE?

In many of the questions raised in the above discussions, it is not
clear that there should be a single best answer. Indeed one may
need different notions of agent for different parts of RE. The con-
trast between t* and Albert, for example, suggests that there may
be a natural division of labour. In focusing on different parts of RE,
namely the early-phase (strategic reasoning) and late-phase (specifi-
cation) respectively, the two frameworks came up with substantially
different notions of agent. A loose coupling between these two frame-
works each with their own notion of agent may be an appropriate
solution [19, 20].



4 Conclusions

We argued for the further development of agent concepts for RE.
Although a number of RE frameworks have employed concepts of
agents, the list of issues raised in this paper suggests that a lot more
work needs to be done in order to fully exploit the potentials of
introducing a concept of agent that adequately reflects the many
needs of RE. The above list of issues is by no means exhaustive, as
there are many other agent-related concepts, e.g., viewpoints and
perspectives, negotiation support, and various notions of conflict or
inconsistency. Through this discussion, we hope to stimulate further
interest in agent-oriented RE, and to encourage research to address
the issues raised, so as to meet the RE challenges brought about by
new environments such as network-centric computing.

A cknowledgements. Financial support from the Natural Sci-
ences and Engineering Research Council of Canada and the Informa-
tion Technology Research Centre of Ontario are gratefully acknowl-

edged.

References

1. B. Boehm, H. In, Identifying Quality-Requirement Conflicts, ITEFFE
Software, pp. 25-35, March 1996.

2. J. A. Bubenko, Information Modeling in the Context of System De-
velopment, Proc. IFIP, pp. 395-411, 1980.

3. J. A. Bubenko, Extending the Scope of Information Modeling, Proc.
4th Int. Workshop on the Deductive Approach to Information Systems
and Databases, Lloret-Costa Brava, Catalonia, Sept. 20-22, 1993, pp.
73-98.

4. K. L. Chung, Representing and Using Non-Functional Requirements
for Information System Development: A Process-Oriented Approach,
Ph.D. Thesis, also Tech. Rpt. DKBS-TR-93-1, Dept. of Comp. Sci.,
Univ. of Toronto, June 1993.

5. A. Dardenne, A. van Lamsweerde and S. Fickas, Goal-Directed Re-
quirements Acquisition, Science of Computer Programming, 20, pp.
3-50, 1993.

6. G. De Michelis, E. Dubois, M. Jarke, F. Matthes, J. Mylopoulos, K.
Pohl, J. Schmidt, C. Woo, and E. Yu, “Cooperative Information Sys-
tems: A Manifesto,” to appear in Cooperative Information Systems:
Trends and Directions, M. Papazoglou and H. Schlageter, eds., Aca-
demic Press, 1997.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. E. Dubois, Ph. Du Bois, F. Dubru, and M. Petit, “Agent-Oriented Re-

quirements Engineering: A Case Study Using the Albert Language”,
Proc. 4th Int. Working Conference on Dynamic Modelling and Infor-
mation Systern - DYNMOD-IV, Noordwijkerhoud (The Netherlands),
September 1994. Delft University Press, 1994.

. Ph. Du Bois, The Albert Il Language — On the Design and the Use

of a Formal Specification Language for Requirements Analysis, Ph.D.
Thesis, Department of Computer Science, University of Namur, 1995.
M. S. Feather, Language Support for the Specification and Develop-
ment of Composite Systems, ACM Trans. Prog. Lang. and Sys. 9 (2),
pp. 198-234, April 1987.

M. S. Feather, Composite System Design, ICSE-16 Workshop on Re-
search Issues in the Intersection Between Software Engineering and
Artificial Intelligence, International Conference on Software Engineer-
ing, Sorrento, Italy, May 16-20, 1994.

0.C.Z. Gotel and A.C.W. Finkelstein, An Analysis of the Require-
ments Traceability Problem, Proc. IEEE Int. Conf. on Requirements
Engineering, Colorado Springs, pp. 94-101, April 1994.

S. J. Greenspan, J. Mylopoulos, and A. Borgida, Capturing More
World Knowledge in the Requirements Specification, Proc. Int. Conf.
on Software Eng., Tokyo, 1982.

M. Hamilton, The Shift to Net-Centric Computing /EFE Computer,
pp- 31-39, Aug. 1996.

M. Jackson, System Development, Prentice-Hall, 1983.

J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis, Telos: Rep-
resenting Knowledge about Information Systems, ACM Trans. Info.
Sys., 8 (4), pp. 325-362, 1990.

K. Pohl, Process-Centered Requirements Engineering. Wiley /Research
Studies Press, New York, 1996.

E. Yourdon, Java, the Web, and Software Development, ITEFE Com-
puter, pp. 25-30, August 1996.

E. Yu, Modelling Strategic Relationships for Process Reengineering,
Ph.D. thesis, Dept. of Computer Science, University of Toronto, 1995.
E. Yu, P. Du Bois, E. Dubois, J. Mylopoulos, “From Organization
Models to System Requirements — A ‘Cooperating Agents’ Approach,”
Proc. 8rd Int. Conf. on Cooperative Information Systems (CooplS-95),
Vienna, Austria, pp. 194-204, May 1995.

E. Yu, “Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering,” Proc. IEFEE Int. Symp. Requirements En-
gineering, Annapolis, Maryland, pp. 226-235, January 1997.

This article was processed using the IATEX macro package with LLNCS
style



