
1

Designing Information Systems in Social Context: A
Goal and Scenario Modelling Approach

Lin Liu1 and Eric Yu2

1Department of Computer Science, University of Toronto
liu@cs.toronto.edu

2Faculty of Information Studies, University of Toronto
yu@fis.utoronto.ca

Abstract. In order to design a better information system, a designer would like
to have notations to visualize how design experts’ know-how can be applied
according to one's specific social and technology situation. We propose the
combined use of a goal-oriented language GRL and a scenario-oriented notation
UCM for representing design knowledge of information systems. Goal-oriented
modelling is used throughout the requirements and design process. In GRL,
goals are used to depict business objectives and system requirements, both
functional and non-functional. Tasks are used to represent different ways for
achieving goals. Means-ends reasoning is used to explore alternative solutions
and their operationalizations into implementable system constructs. Social
context is modelled in terms of dependency relationships among agents and
roles. Scenarios expressed in UCM are used to describe elaborated business
processes or workflow. The complementary use of goal-oriented modelling
with GRL and scenario modelling with Use Case Maps is illustrated with an
example of designing a web-based training system.

1. Introduction

An information system is a social artifact serving the different interests of many
stakeholders. Thus, inevitably, the design of an information system is a social activity,
which involves understanding the social, organizational context of the system-to-be
and making design decisions according to the limitations of environment and
technology. As more and more software and information systems adopt Internet
technologies and protocols for greater openness and interoperability, many new
requirements appear. Unlike the closed computing environments for which most of
the traditional information systems development methods were designed, the open,
dynamic and almost unbounded nature of the Internet presents many new challenges
and complexities. The design of new information systems, particularly Internet
applications and web-based systems, are increasingly based on reusable components
and flexible combination of existing patterns, which are hard to deal with without
effective models and decision support tools.

In requirements engineering, a goal-oriented modelling approach has been
recognized to be useful [12] [18]. In general, goals describe the objectives that the
system should achieve through the cooperation of actors in the software-to-be and in

2

the environment [18]. It captures “why” the data and functions are there, and whether
they are sufficient for achieving the high-level objectives that arise naturally in the
requirements engineering process. The incorporation of explicit goal representations
in requirement models provides a criterion for requirements completeness, i.e., the
requirements can be judged as complete if they are sufficient to establish the goals
that they are refining.

Scenario-oriented models present possible ways in which a system can be used to
accomplish some desired functions or implicit purpose. Typically, it is a temporal
sequence of interaction events between the intended software and its environment
(composed of other systems and humans). A scenario could be expressed in various
forms including narrative text, structured text, images, animation or simulations,
charts, maps, etc. The content of a scenario could describe system-environment
interactions or events inside a system. Scenarios have been used for various purposes
- as means to elicit or validate system requirements, as concretization of use-oriented
system descriptions, or as bases for test cases [13][17][22]. Scenarios have also
become popular in other fields, notably human-computer interaction and strategic
planning [3][9].

While goal modelling and scenario modelling each offers important capabilities,
neither is adequate on its own for fully support requirements and design processes.
Goals are sometimes abstract and implicit and can be complemented by concrete and
explicit scenarios. Scenarios are usually partial and incomplete. Their inadequacies in
coverage can be revealed through goal modelling and means-ends reasoning.
Scenarios provide the snapshots of possible design solutions or fragments of
solutions. Their concreteness facilitates the communication process between
stakeholders and implementers of the system. On the other hand, goal modelling
supports the explicit identification of alternatives and design tradeoffs. The proposed
combined approach therefore draws on the complementary strengths of goals and
scenarios to facilitate decision-making at all stages from early requirements to fairly
detailed design. At the same time, it makes all the decision making process traceable.

The goal-oriented requirements language GRL [6] [21] is designed to support goal
and agent-oriented modelling and reasoning, providing guidance to the design
process. In this paper, we propose the combined use of GRL with the scenario-based
notation Use Case Maps (UCM) [2]. UCM allows the behavioral aspects of the
designed system to be visualized at varying degrees of abstraction and levels of detail.
The two notations complement each other to enable technical solutions to be
described and elaborated, and evaluated according to their contributions to the
objectives of different stakeholders, guiding the design towards viable solutions.
While there are other ways of expressing scenarios, such as Use Cases and Activity
Diagrams in UML, Message Sequence Charts, etc., we choose UCM to complement
GRL due to following considerations. UCM intends to straddle requirements and
high-level architectural design stages, which closely matches with the scope of GRL.
UCM supports the different levels of abstraction (with stub and plug-in mechanism)
of system architecture, which complements the multi-level goal modelling of GRL.

Information systems design is a knowledge-intensive process. It involves domain-
specific design knowledge, generic software design knowledge and knowledge about
the specific situations of the current design. GRL and UCM together provide an

3

ontology for expressing such knowledge. For example, consider the design of a web-
based training system. Domain-specific know-how on picking a lesson structure can
be represented as UCM scenarios of common lesson structures. Generic software
design knowledge on the possible collaboration mechanisms for a web-based system
is captured as a GRL means-ends structure that connects the possible mechanisms (e-
mail, newsgroup, chat, screen-sharing and audio/video conferencing) to the goal
“Determine Collaboration Mechanism”.

Basic concepts of GRL are introduced in section 2. In section 3, we summarize our
approach of using GRL to incrementally model requirements and design. In section 4,
a case study in the e-training domain is used to illustrate the proposed approach. In
section 5, the combined use of GRL and UCM is introduced. In section 6, related
work is discussed. Conclusions and future work are in section 7.

2. The GRL Modelling Notation

The Goal-oriented Requirements Language (GRL) [6] [21] is a language for
supporting goal and agent oriented modelling and reasoning about requirements, with
an emphasis on dealing with non-functional requirements (NFRs)[4]. It provides
constructs for expressing various types of concepts that are useful for supporting the
requirements and high-level design process. There are three main categories of
concepts: intentional elements, intentional links, and actors. GRL elements and links
are intentional in that they are used in models that answer questions about intents,
motivations and rationales, such as:

§ Why are particular behaviors, information and structures are chosen to be
included in the system requirements?

§ What are the alternatives to be considered?

§ What criteria are to be used to deliberate among alternative options?

§ What are the reasons for choosing one alternative over others?

A GRL model can be composed of either a global goal model, or a series of goal
models distributed amongst several actors. If a goal model includes more than one
actor, then the intentional dependency relationships between actors can also be
represented and reasoned about.

The intentional elements in GRL are goal, task, softgoal, resource and belief. A
goal is a condition or state of affairs in the world that the stakeholders would like to
achieve. A goal can be achieved in different ways, prompting alternatives to be
considered. A goal can be either a business goal or a system goal. Business goals are
about the business or state of the affairs the individual or organization wishes to
achieve in the world. System goals are about what the target system should achieve,
which, generally, describe the functional requirements of the target information
system. In GRL graphical representation, goals are represented as a rounded rectangle
with the goal name inside.

4

A softgoal is typically a quality (or non-functional) attribute on one of the other
intentional elements. A softgoal is similar to a (hard) goal except that the criteria for
whether a softgoal is achieved are not clear-cut and a priori. It is up to the developer
to judge whether a particular state of affairs in fact sufficiently achieves the stated
softgoal. Non-functional requirements (NFRs), such as performance, security,
accuracy, reusability, interoperability, time to market and cost are often crucial for the
success of an information system. In GRL, non-functional requirements are
represented as softgoals and addressed as early as possible in the software lifecycle.
They should be properly modelled and addressed in design reasoning before a
commitment is made to a specific design choice. In the GRL graphical
representation, a softgoal, which is “soft” in nature, is shown as an irregular
curvilinear shape with the softgoal name inside.

A task specifies a particular way of doing something. It may be decomposed into a
combination of subgoals, subtasks, resources and softgoals. These sub-components
specify a particular course of action while still allowing some freedom. Tasks are
used to incrementally specify and refine solutions in the target system. They are used
to achieve goals or to "operationalize" softgoals. These solutions provide operations,
processes, data representations, structuring, constraints and agents in the target system
to meet the needs stated in the goals and softgoals. In GRL graphical representation,
tasks are represented as a hexagon with the task name inside.

A resource is a (physical or informational) entity, which may serve some purpose.
From the viewpoint of intentional analysis, the main concern with a resource is
whether it is available. Resources are shown as rectangles in GRL graphical
representation.

The Belief construct is used to represent design assumptions and relevant
environmental conditions. It allows domain characteristics to be considered and
properly reflected in the decision making process, hence facilitating later review,
justification and change of the system, as well as enhancing traceability. Beliefs are
shown as ellipses in GRL graphical representation.

Intentional links in GRL include means-ends, decomposition, contribution,
correlation and dependency links. Means-ends links () are used to describe how
goals can be achieved. Each task connected to a goal by a means-ends link is one
possible way of achieving the goal. Decomposition links () define the sub-
components of a task. A contribution link (→) describes the impact that one element
has on another. A contribution can be negative or positive and can be of different
extents. The extent is judged to be partial or sufficient based on Simon's concept of
satisficing [16]. Accordingly, contribution link types include: help (positive and
partial), make (positive and sufficient), hurt (negative and partial), break (negative
and sufficient), some+ (positive of unknown extent), some- (negative of unknown
extent). Correlation links (dashed contribution links) describe the side effects of the
existence of one element to others. Dependency links () describe the inter-agent
dependent relationships.

An actor is an active entity that carries out actions to achieve its goals by
exercising know-how. It is an encapsulation of intentionally, rationality and autonomy

5

[20]. Graphically, an actor is represented as a circle, and may optionally have a dotted
boundary, with intentional elements inside. To model complex relationships among
social actors, we further define the concepts of agents (circle with a line at top), roles
(circle with a line at bottom), and positions (four-leaf flower), each of which is an
actor in a more specialized sense.

An agent is an actor with concrete, physical manifestations, such as a human
individual or a machine. A role is an abstract characterization of the behavior of a
social actor within some specialized context or domain of endeavor. A position is
intermediate in abstraction between a role and an agent. It is a set of roles typically
played by one agent. Positions can cover roles. Agents can occupy positions. Agents
can also play roles directly. The “INS” construct represents the instance-and-class
relation. The “ISA” construct expresses conceptual generalization/ specialization.

3. A Goal and Scenario Modelling Design Method

The proposed goal and scenario modelling approach was motivated by the need in the
telecommunications domain for a notation for expressing and analyzing user
requirements [23]. User requirements need to address behavior as well as quality
attributes. While UCM is a useful requirement-level notation for telecommunications
software [1], it does not provide systematic support for dealing with business
objectives, goals, and non-functional requirements (NFRs) during requirement
analysis and their achievement during subsequent design. NFRs are requirements such
as performance constraints, systems operational costs, reliability, maintainability,
portability, interoperability, robustness, and the like. In software development
practice, many NFRs are stated only informally, making them difficult to analyse,
specify and enforce during software development and to be validated by the user once
the final system has been built. Goals and NFRs, however, do play a crucial role
during system development, serving as selection criteria for choosing among
alternatives during requirements analysis, for example, determining where the system
boundaries should be and what functional requirements to include in the system.

Many of the alternative approaches to deal with NFRs originated from the
technical work related to quality metrics. Such approaches attempt to quantify NFRs
and then measure to what extent an existing system or parts of it meet the desired
non-functional requirements. Useful metrics exist only for a small number of NFRs
such as performance, reliability, software complexity, and development process
maturity. Moreover, metric-based approaches are hard to use. During analysis and
design there are many competing requirements, many of which are not quantitative.
The GRL notation deals with NFRs and goals during the process of requirements
analysis and system design; it allows for the expression of conflict between goals, of
decisions that resolve conflicts and of the rationale for the trade-off decisions. The
agent aspect of GRL helps in considering multiple stakeholders’ concerns
simultaneously.

6

To support early requirements engineering and high-level system design, our goal
modelling approach aims to elicit, refine and operationalize customer-specific
requirements incrementally based on the knowledge of domain experts, until a
satisfactory design is found. In this process, the overall objectives of a system have to
be clarified, the concrete behaviors and constraints of the system-to-be need to be

Figure 1. Goal modelling based system design process

Model major players in the industry (human,
organization, and system) as actors, model their
social relationships as dependencies in GRL model

Refine the goals and softgoals to discover
applicable solutions incrementally

Model the business objectives and the system
requirements of key actors as goals or softgoals

Problem descriptions,
Business objectives…
Existing technologies, processes…

YesNo

No

No

Yes

All goals &
softgoals are
sufficiently fulfilled?

Represent (parts of) the solutions
with UCM scanrios when appropriate

Evaluate the solutions' impacts to the
social relationships and the fulfillment
of goals and softgoals in GRL

Assemble the solutions into a complete design description

Yes

No

Add the new goals
(softgoals) in GRL model

The design details are
acceptable to users?

Higher level goals
are discovered when
asking "why"?

Model functional units as
components, model actions as
responsibilities in UCM Model

Draw use case paths representing
business processes or workflow

Bind the responsibilities with the
components in UCM model

7

elaborated, and functions should be assigned to responsible units in that system.

The goal and agent oriented modelling in GRL focuses on answering the “why”
questions of requirements (such as “why does the system need to be redesigned?” or
“why is the interface designed as it is?”). The strength of GRL modelling is that it
puts the design in a broader context, it considers from different stakeholders'
viewpoints, and seeking for a balanced solution for all. Another advantage of GRL is
that not only functional requirements but also non-functional requirements (in other
words, the quality requirements) are dealt with.

While goal-orientation can be highly useful for requirements engineering, goals
are sometimes too abstract to capture all at once. Often they are discovered and
become explicit only after a deeper understanding of the system has been achieved. In
particular, users and developers often find it natural to think about operational
scenarios about using the hypothetical system. More conventional requirements and
design notations typically answers the “what” questions such as “what should the
system do to provide activity centered electronic lessons?” or “what is the process of
giving learner customized tutorial?"

The general steps of the proposed approach are illustrated in Figure 1. From the
flowchart, we can see that goal modelling and scenario modelling proceed in parallel,
and they can interact at certain points in each round. In the goal-oriented modelling
process, actor dependency models are first created, then the original business
objectives and system requirements are identified and operationalized, until some
concrete design options are obtained. These design options are explored with UCM
scenarios. On the UCM side, business process or workflow, as well as responsibility
assignment are visualized and analyzed. On both sides, new requirements may
become evident by asking why questions, and be entered into the GRL model. When
all scenarios are acceptable, and all goals and softgoals are sufficiently fulfilled, the
solution fragments for each independent goal can be assembled to form a complete
design for the intended system. Elaborated descriptions of use cases, processes and
information flow are also obtained.

4. Case Study: Designing a Web-Based Training System

The proposed goal and scenario modelling approach is best used to address cases
where there are multi-stakeholders with diverse concerns and expectations, leading to
complex interactions among functional and non-functional requirements that need to
be balanced and traded off. There should be well-established domain knowledge
bases that the current design can benefit from. The complexity of the case should be
such that there are many decision points at which multiple alternatives need to be
considered, and where at least some of the alternatives can be visualized as scenarios.
The proposed approach supports both the design of new systems, and the
reengineering of legacy systems, as suggested by the iterative design process shown
in the flowchart of section 3.

8

To illustrate the application of the goal and scenario modelling approach, we use

the example of designing a Web-Based Training (WBT) System, adapted from [8].
Web-based information system usually involves multiple stakeholders with different
interests. These stakeholders, modelled as intentional agents, impose complicated
functional and quality requirements on the future system, which need to be considered
and evaluated systematically according to the prospective solutions.

Starting from the identification of the major stakeholders of the domain, we
explain in sequence how to capture the original business objectives of the
stakeholders, refine and operationalize these objectives into applicable design
alternatives with GRL.

Step 1: Modelling social entities and their relationships

Placing system design within its broader social context [19] (as in Figure 3), the
proposed modelling approach helps to address the following questions systematically:
Who are the major players in the business domain? What are the generic relationships

Figure 2. Major players in E-Learning domain, agent dependency relationships,
role-playing relationships and agent classification

Legend

9

between these players? How to specialize these generic patterns through role-
assignment and agent class instantiation? The major players are modelled as actors.
The relationships between players are modelled as actor dependency relationships of
different type. Then by distinguishing abstract roles and concrete agent classes and
instances, we may model requirements at both the domain level (generic patterns) and
the application level (specialization of the generic patterns).

In the Web-Based Training example, some of the major players are course
provider, learner, technology provider, knowledge provider, and instructor. These are
modelled as roles because they embody abstract capabilities and wants (Figure 2).
Learner depends on Instructor to Give Instructions and Feedback. Instructor depends on
Course Provider to Be Employed. Course Provider depends on support from Technology
Provider, Knowledge Provider and Pedagogical Knowledge Provider. Square brackets are
used to include parameters necessary for identifying the actors. The agent WBT/E-
Learning Consultant (a person) plays both the roles of Technology Provider and
Pedagogical Knowledge Provider.

Apart from the three instance level agents - Mortgage Bankers Association of America,
Mortgage Banker Jim, and William Horton Consulting, the model represents the common
practices of the e-training domain, and is a reusable domain knowledge model.
Mortgage Bankers Association of America plays the role of Course Provider as well as the
role of Knowledge Provider, so it inherits all the dependency relationships of the two
abstract roles in reality.

Step 2: Modelling business objectives

After the main players are identified, their high-level business objectives will be
elicited, i.e., what they hope to accomplish for their organization, their sponsors, or
their financial backers by using the information system under consideration. Thus,
these objectives and requirements will be modelled as primitive goals or softgoals of
the actors. We use (hard) goals to represent functional requirements, and softgoals for
non-functional requirements.

In our case study, the Mortgage Bankers Association of America playing Course
Provider has two specific targets in mind:

§ Earn $200,000 by selling courses

§ Reduce costs of training by 50% over the next year

In the initial GRL goal model in Figure 3, they are represented as softgoals (we

Figure 3: Business objectives represented as softgoals in original goal model

10

consider them as variations of the non-functional requirement "profitability"). From
common-sense knowledge, we also know that a course provider's primitive goal is to
provide course, thus it is added as a goal of the corresponding role.

Step 3: Generating Design Alternatives

Starting from the initial goals and softgoals, we proceed to explore the alternative
business processes, methods or technologies used in this industry to achieve these
goals. A specific way for achieving a goal is represented as a task, and it is connected
to the corresponding goal by a means-ends link, while being connected to a softgoal
by contribution links. When refining a high level goal/softgoal, we may use
decomposition, specialization, substitution, or other refinement techniques applicable
to the domain, until operational design solutions are found [4].

In Figure 4, the two softgoals of the Mortgage Banker's Association of America can be
reduced into two general softgoal applicable to all Course Providers - Low Cost and
Customer Satisfaction. The two softgoals, together with the goal of Course Be Provided,
are refined individually. Since the two most obvious choices for giving a course are to
provide Conventional Classroom Training, or Web-Based Training(WBT), a first design
choice is made between them. From the two initial softgoals, we can see that cost is
more critical for the stakeholder. Thus, the softgoal Low Cost is refined in detail.

Figure 4. Explore possible designs for the future system (high-level)

11

Step 4: Evaluating Design Alternatives: Contributions to Softgoals

To evaluate how the design alternatives are serving the specific business objectives
and the quality expectations of stakeholders, contributions of the design options to the
softgoal will be explicitly modelled. In addition to analyzing the solutions within the
boundary of one actor, we can also evaluate the two solutions according to their
impacts to the relationships among actors. This will be illustrated in Step 7.

Table 1. Cost estimation on the two kinds of training

Develop
time

Develop
cost

Instructor
Travel
Cost

Instructor
Salary
Cost

Facility
cost

Learner
Travel
cost

Total
estimate
cost

Conventional
Classroom
Training

50 hrs $50/hr $1500 $25/
student

$500/
student

$1500 $513,000

Web-Based
Training

200hrs $100/hr $0 $50/
student

$50/
student

$0 $338,500

In Table 1, we list how the two solutions Web-Based Training and Conventional
Classroom Training (represented as task nodes) lead to different cost on the items
indicated by the sub-softgoals of Low Cost in Figure 4. Based on these data, in Figure
5, we use contribution links to depict that WBT helps the goal of Lower Total Training
Costs, which in turn helps the satisficing of Reduce Cost of Training by 50% Over Next
Year. Conventional Classroom Training hurts the fulfillment of this goal. Furthermore,
the fulfilling of this goal helps the achievement of Earn $200,000 By Selling Courses.
The result of this initial analysis suggests that WBT may be a better option for the
current stakeholder. The upper part of this model (the two softgoals and the help
relationship between them) is only applicable to the current system, while the lower
part (the structure showing the different resource consumption of the two solutions)
depicts generic domain knowledge reusable for all course providers of web-based
training system.

Step 5: Elaborating on the Candidate Solution

Having selected one solution over the other, we need to evaluate the advantages and
disadvantages of the candidate solution further. In this round of evaluation, other
softgoals of concern are considered, to whom the candidate solution's contributions
are investigated.

GRL evaluates the satisfaction of a softgoal via a qualitative labeling procedure
[4]. The label of a high level node is computed from the label of low level nodes and
the type of contribution from these nodes, with possible user input. As one can hardly
find a perfect technology, or a perfect situation that a technology can apply to without
any change, a best solution, for many needs, may be a hybrid combining the best
features of different solutions. In this case, alternative solutions need to be further

12

decomposed and reassembled. For disadvantages indicated by negative links or labels,
mitigation measures are sought to strengthen the current solution. The labels are

defined as follows: Satisficed (), Weakly Satisficed (), Conflict/irresolvable (),
Undecided (), Weakly Denied (), Denied ().

The corresponding goal model in Figure 6 shows that the advantages of WBT
include Costs Saved, Better Teaching Techniques Enabled, Collaborative Learning Promoted,
and Effective Learning Technologies Used. Consequently, Quality of Learning Improved is
weakly satisficed (represented with a check mark with a dot underneath). It also
contributes positively to Globalization, Flexibility, and both help the Learner's Satisfied, as
the right hand side of the model suggests. On the left side, unfortunately, negative
contributions are also revealed, e.g., the inherent High Dropout Rates and More Efforts on
Conversion and Electronic Delivery of WBT hurts the high level softgoals of the
stakeholder. These negative contributions make the two high level softgoals be
labeled as irresolvable (denoted by a thunderbolt symbol) - there are both strong
positive contributions and strong negative contributions.

To weaken the negative contributions, countermeasures such as Require Commitment
are added in the design. They are represented as tasks with negative correlation links
(the dotted lines with arrows) to the unfavorable contributions in the graph. Adding
these countermeasures will weaken the impact of the softgoals with negative
contributions. In such a case, although the contributions from these softgoals are still
undecided, high-level softgoals are already judged as weakly satisficed based on the
system developer’s opinion (Figure 7).

Figure 5. Compare alternative designs by resource consumption

13

Figure 6. Evaluate candidate design's advantages and disadvantages

Figure 7. Install mitigation measures to the design

Step 6: Refining a Solution

After each decision-making session, the design proceeds further by identifying the
essential sub-processes/components of the candidate solution, then step 3, 4 and 5 will
be repeated. Sub-components are connected to the root task with decomposition links.

14

The model in Figure 8 illustrates how the task Build a WBT System is refined. First
of all, a Course Provider needs to Choose e-Course Pattern, decide whether to use
Collaboration Mechanisms and what mechanism to use, and Pick a Lesson Structure for
the course. As all of these sub-processes are necessary steps for the finishing of the
root task, they are represented as subgoals connected to the root task with
decomposition links. Similarly, existing collaboration mechanisms are connected to
the goal Determine Collaboration Mechanisms with means-ends links. Their impacts to
social dependencies and contributions to course provider’s business objectives will be
further explored. By making tradeoffs among the possible solutions, one iterates until
an acceptable design is obtained.

Step 7: Evaluating Impacts on Dependencies

Now we come to the decision making process for Choose e-Course Pattern. In Figure 8,
two alternatives are generated and connected to the parent node with means-ends link:
Instructor-led Pattern and Learner-led Pattern. In addition to the kind of analysis shown in
step 4, we can also evaluate the alternative solutions according to their impacts to
social relationships. The dependency links pointing from these two tasks tell us that

Figure 8. Refinement of design and decision-making based on social relations

15

the two solutions lead to quite different role characteristics – the Instructor is the
driving force in Instructor-led Pattern, but only Act As an Optional Learning Resource in
Learner-led Pattern. Conversely, the dependencies pointing to the two task nodes show
that they have different capabilities and qualities to offer. Learner-led Pattern favors
Lower Cost. Learner enjoys more Flexibility on their schedule and learning content, and
they also appreciate the Anonymity and Privacy. In Instructor-led Pattern, Instructor can
often Prompt Answer to Questions, and the Learner Be More Inspired or Motivated. Thus,
corresponding to the requirements of different kinds of courses, different pattern can
be adopted.

5. Scenario-Based analysis

As the goal-oriented design proceeds, finer-grained analysis needs to be conducted.
The scenario-based notation UCM comes into use.

5.1 UCM

Use Case Maps (UCM)[2] provide a visual notation for scenarios, which is proposed
for describing and reasoning about large-grained behavior patterns in systems, as well
as the coupling of these patterns. The UCM notation employs scenario paths to
illustrate causal relationships among responsibilities. It provides an integrated view of
behavior and structure by allowing the superimposition of scenario paths on a
structure of abstract components. Scenarios in UCM can be structured and integrated
incrementally. This enables reasoning about and detection of potentially undesirable
interactions between scenarios and components.

Basic elements of UCMs are start points, responsibilities, end points and
components. Start points (filled circles) represent pre-conditions or triggering causes.
End points (bars) represent post-conditions or resulting effects. Responsibilities
(crosses) represent actions, tasks or functions to be performed. Components (boxes)
represent entities or objects composing the system. Use case Paths (wiggle lines)
connect start points, responsibilities and end points. A responsibility is bound to a
component when the cross is inside the component. In this case, the component is
responsible for performing the action, task, or function represented by the
responsibility.

When maps become too complex to be represented as a single UCM, a mechanism
for defining and structuring sub-maps becomes necessary. A top level UCM, referred
to as a root map, can include containers (called stubs) for sub-maps (called plug-ins).
Stubs are represented as diamonds. Stubs and plug-ins are used to solve the problems
of layering and scaling or the dynamic selection and switching of implementation
details. Other notational elements include OR-join, OR-fork, AND-join, AND-fork,
timer, abort, failure point, and shared responsibilities. A detailed introduction to and
examples of these concepts can be found in [2].

16

5.2 Combined use of GRL and UCM

Although UCM can represent system designs in a high-level way, the tradeoffs
between alternatives, and the intentional reasoning behind design decisions cannot be
explicitly shown. In our approach, we couple GRL with UCM to provide support for
reasoning about scenarios by establishing correspondences between intentional GRL
elements and functional components and responsibilities in the scenario models of
UCM. The complementary modelling of goals and scenarios aid in identifying further
goals and additional scenarios (and scenario fragments) important to system design,
thus contributing to the completeness and accuracy of requirements, as well as to the
quality of system design.

Continuing with the design of web-based training system in section 4, we now
consider the implementation of the goal Pick Lesson Structure. The alternative
structures are denoted as task nodes in the bottom of the GRL model in Figure 9. It is
hard to tell which structure is more appropriate only by doing strategic, intentional
analysis with GRL. In order to visualize the behavioral aspects of the alternatives, we
link the appropriate GRL nodes to scenarios in UCM.

In the lower half of Figure 9, a class structure representing Classic Tutorials is

Figure 9. Design alternatives and the corresponding scenarios

17

depicted as a UCM scenario. In the scenario, WBT System and Learner are
represented as agent components (rectangles), which holds responsibilities (small
crosses along the wiggle lines). The scenario shows that, in a classic tutorial, after an
introduction, learners do readings through a series of sessions, each teaching a more
difficult concept or skill. At the end of the sequence (denoted with a use case path, the
wiggle line with filled circle head, and small bar tail) is a summary and a test.
Examples and practice are also provided in each session.

Elaborating on these details helps the identification of new requirements. For
example, Learner’s Satisfaction, Flexibility, Reliability and Easy to Use are required for the
training program to be profitable and successful. Thus, these newly identified
requirements are added on the right hand side of the goal model in Figure 9.

Figure 10.1 Evaluate Classic Tutorial Structure

In Figure 10, the class structure is evaluated using the qualitative evaluation
procedure mentioned above. The result shows that the current structure is not an ideal
choice. It is simple, reliable, but lack flexibility.

Thus, a good-to-have feature of the above class structure is that, for each learner,
the tutorial is as easy and straightforward as a class tutorial, but the course content can
be customized by different learners. Below is a scenario for this class structure -
Learner Customized Tutorial.

Figure 11. UCM scenario for Learner Customized Tutorial

18

The scenario in Figure 11 shows that the use case path branches for different
learners if they choose different subjects in the course, from which we can see that
student's Individual /Specific Needs Be Considered. This class structure satisfied all the
currently required softgoals, so it is a possible choice for the designer.

In this case study, the UCM models are rather simplistic because we have only
tackled the highest level of process design, and the processes in e-training are not very
complicated. As we go down to a sufficiently detailed design, a UCM model can be
fairly complex, and more modelling constructs need to be used. Having analyzed the
benefits and tradeoffs of these structures, we can see that UCM is a useful
complement to GRL in the process from requirements to high-level design. It
provides a concrete model of each design alternative.

Figure 10.2 Evaluate Learner Customized Tutorial Structure

During each step shown above, new non-functional requirements may be detected
and added to the GRL model. At the same time, in the GRL model, new means to
achieve the functional requirements can be explored and concretized in a UCM
model. Thus the above design process may iterate until an acceptable design is
reached.

6. Discussion and Related Work

The above example illustrated some of the benefits of coupling goals and scenarios
during requirements analysis and design. GRL and UCM together facilitates the
transition from a requirements specification to a high level design involving the
consideration of alternative architectures and the discovery of further requirements
that must be vetted by the stakeholders. Both of the notations have dynamic
refinement capabilities. During refinement, a high level of abstraction is maintained,
as scenarios in UCM are described as first class entities without requiring reference to
system sub-components, specific inter-component communication facilities, or sub-
component states [2]. As one allocates scenario responsibilities to architectural

19

components in UCM, GRL helps keeping track of decisions at various stages. GRL
provides facilities to express, analyze and deal with goals and non-functional
requirements. It also provides facilities to capture reusable analysis and design
knowledge related to know-how for addressing non-functional requirements and to
manage evolving requirements.

The work of this paper builds on an original submission to ITU-T Study Group 10
(now Study Group 17) on the topic of User Requirements Notation (URN) [23]. The
User Requirements Notation (URN) is intended to allow software engineers to
specify, review for correctness, and possibly discover requirements for a proposed
new system or for extensions to an existing system. UCM is being proposed for
specifying functional requirements, and GRL for non-functional requirements. The
methodology introduced in this paper illustrates how the two modelling notations
complement each other.

Goal-oriented modelling has received considerable attention with requirements
engineering [18]. The KAOS approach is most concerned with the generation of
alternative system designs from high-level goals defined in temporal logic [12]. In
[11], the process of inferring formal specifications of goals and requirements from
scenario descriptions is studied. While goal elaboration and scenario elaboration are
treated as intertwined processes, the focus of the work is mainly on goal elicitation.
Our emphasis is the other way around, i.e., how to use goal model (especially NFRs)
to direct design based on scenarios as well as other notations. The fundamental point
is that the goal-oriented modelling and its interaction with other modelling activity
run through requirements to the entire design process.

In the CREWS project, Rolland et al. have proposed the coupling of goals and
scenarios in requirements engineeing with CREWS-L’Ecritoire [15]. In CREWS-
L’Ecritoire, scenarios are used as a means to elicit requirements/goals of the system-
to-be. Both goals and scenarios are represented as structured text. The coupling of
goal and scenario could be considered as a “tight” coupling, as goals and scenarios are
structured into <Goal, Scenario> pairs, which are called “requirement chunks”. The
focus is mainly on the elicitation of functional requirements and goals. In GRL, both
functional and non-functional requirements are considered, with special attention
being paid to non-functional requirements. The modelling process involves both
requirements engineering activities and high-level architectural and process design.

Also in the CREWS project, Haumer et al. have proposed to use real world scenes
to elicit and validate requirements specifications [7]. Goals are used as central
concepts of requirement description. Hierarchical goal structures are linked and
annotated with positive and negative scenarios. Their approach typically starts from
fairly low level functional goals rather than high-level goals like “increase profit by
10%”. The kinds of scenarios they propose to capture are multi-media scenarios of
current system usage.

The Software Architecture Analysis Method (SAAM) [10] is a scenario-based
method for evaluating architectures. It provides a means to characterize how well a
particular architectural design responds to the demands placed on it by a particular set
of scenarios. Based on the notion of context-based evaluation of quality attributes,
scenarios are used as a descriptive means of specifying and evaluating quality

20

attributes. SAAM scenarios are use-oriented scenarios, which are designed
specifically to evaluate certain quality attributes of architecture. The evaluations are
done using simulations or tests on a finished design. In the GRL and UCM approach,
scenarios are more design-oriented, being concerned with the refinement of system
requirements. The quality of the architectures corresponding to these scenarios is
judged based on expert knowledge as the design proceeds.

7. Conclusions and Future Work

The complementary of GRL and UCM supports the progress from abstract
requirements, both functional and non-functional, to concrete system models. The
approach combines an intentional strategic actor’s view of design rationales and a
non-intentional behavioral view of the future system. We believe the approach is
useful to information systems in general, where there are conflicting goals and
tradeoffs to be dealt with during design. A case study in telecommunication domain is
discussed in [14], which focuses more on using goal and scenario together in software
architectural design. Combining the two notations may not be necessary for some
classes of applications. For example, if the design of a system does not decide on
temporal orders, causal relationships, and other behavioral characteristics, then GRL
is sufficient. On the other hand, if during the design of the system, there are not many
alternatives and competing goals, and the main task for the software engineer is just to
work out all the details, then UCM itself may be quite enough for the work.

For future work, it would be worthwhile to investigate tighter coupling at language
level to provide more guidance and support. In the current approach, the coupling of
goals with scenarios is loose - goal models and scenario models can be constructed
fairly independently. One scenario model may refer to more than one goal, and vice
versa. There are no rigid constraints on the requirements engineering and design
process. That is, the goal model and behavior models can be developed in parallel
simultaneously, interacting whenever there are design decisions to be traded off, or
new design alternatives need to be sought, or new business goals or non-functional
requirements are discovered.

GRL and UCM are vehicles for expressing knowledge. To make better use of GRL
and UCM concepts, we need to acquire and accumulate both software design
knowledge and more knowledge of various domains, and represent this knowledge in
the corresponding modelling structures. The development of such repositories would
enable the reuse of knowledge and provide useful guidance for the design process.

Another ongoing work is to extend a formal goal-oriented requirements language,
Formal Tropos, so that the temporal properties shown in the UCM behavior models
currently can be embedded into the goal models and so that they can be validated with
model-checking techniques [5].

21

Acknowledgements

The work of this paper is motivated by an original submission to ITU-T study group
17 on the topic of User Requirements Notation (URN). The kind cooperation of
members of Mitel Networks, Nortel Networks and other institutions is gratefully
acknowledged. This work received financial support from NSERC, CITO, and Mitel
Networks.

References

[1] Amyot, D., Mussbacher, G. and Mansurov, N. Understanding Existing Software with Use
Case Map Scenarios. In: 3rd SDL and MSC Workshop (SAM’02), Aberystwyth, U.K.,
June 2002.

[2] Buhr, R.J.A. Use Case Maps as Architectural Entities for Complex Systems. In:
Transactions on Software Engineering, IEEE, Vol. 24, No. 12, December 1998, pp. 1131-
1155.

[3] Carroll, J. M. Introduction: The Scenario Perspective on System Development. In
Scenario-Based Design: Envisioning Work and Technology in System Development, Ed
Caroll, J. M. 1995. pp. 1-17.

[4] Chung, L., Nixon, B.A., Yu, E.and Mylopoulos, J. Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, 2000.

[5] Fuxman, A., Pistore, M., Mylopoulos, J., and Traverso, P. Model Checking Early
Requirements Specifications in Tropos. In Proceedings of the 5th IEEE International
Symposium on Requirements Engineering. August 2001. Toronto, Canada. 174-181.

[6] GRL web site. http://www.cs.toronto.edu/km/GRL/

[7] Haumer, P., Pohl, K. and Weidenhaupt, K. Requirements Elicitation and Validation with
Real World Scenes. IEEE Transactions on Software Engineering, Vol. 24, No. 12,
December 1998, pp.1036-1054.

[8] Horton, W. Designing Web-Based Training, John Wiley & Sons, 2000.

[9] Jarke, M., Bui, X.T., Carroll, J.M. Scenario management - an interdisciplinary approach.
Requirements Engineering Journal 3(3-4), pp. 155-173, 1998 .

[10] Kazman, R., Bass, L., Abowd, G. and Webb, M. SAAM: A Method for Analyzing the
Properties of Software Architectures. In Proceedings of the 16th International Conference
on Software Engineering. May 1994. Sorrento, Italy. 81-90.

[11] Lamsweerde, A.V., Willemet, L. Inferring Declarative Requirements Specifications from
Operational Scenarios. IEEE Transactions on Software Engineering, Special Issue on
Scenario Management, December 1998.

[12] Lamsweerde, A. V. Requirements Engineering in the Year 00: A Research Perspective. In
the Proceedings of 22nd International Conference on Software Engineering. Limerick,
June 2000, ACM press.

[13] Leite, J. G. Hadad, J.Doorn, G. Kaplan: A Scenario Construction Process. Requirements
Engineering. Vol. 5, No. 1, 2000, pp.38-61.

22

[14] Liu, L., Yu, E. From Requirements to Architectural Design - Using Goals and Scenarios.
ICSE-2001 Workshop: From Software Requirements to Architectures (STRAW 2001)
May 2001, Toronto, Canada. pp.22-30. Toronto, Canada, May 14, 2001. On-line at:
http://www.cs.toronto.edu/~liu/

[15] Rolland, C., Grosz, G. and Kla, R. Experience With Goal-Scenario Coupling In
Requirements Engineering. In Proceedings of the IEEE International Symposium on
Requirements Engineering 1998. June 1999. Limerick, Ireland.

[16] Simon, A. H. The Sciences of the Artificial, Second Edition. Cambridge, MA: The MIT
Press, 1981.

[17] Sutcliffe, A., Maiden, N., Minocha, S. and Manual, D. : Supporting Scenario-Based
Requirements Engineering. IEEE Transactions on Software Engineering. Vol. 24, No. 12,
December 1998, pp.1072-1088.

[18] Yu, E. and Mylopoulos, J. Why Goal-Oriented Requirements Engineering. In Proceedings
of the 4th International Workshop on Requirements Engineering: Foundations of Software
Quality. June 1998, Pisa, Italy. E. Dubois, A.L. Opdahl, K. Pohl, eds. Presses
Universitaires de Namur, 1998. pp. 15-22.

[19] Yu, E. Agent-Oriented Modelling: Software Versus the World. In the Proceedings Agent-
Oriented Software Engineering AOSE-2001 Workshop. LNCS 2222. On-line at:
http://www.fis.utoronto.ca/faculty/yu

[20] Yu, E. Agent Orientation as a Modelling Paradigm. Wirtschaftsinformatik. 43(2) April
2001. pp. 123-132.

[21] Yu, E. Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering (RE'97) Jan. 6-8, 1997, Washington D.C., USA. pp. 226-235.

[22] Weidenhaupt, K., K.Pohl, M.Jarke, P.Haumer. Scenario management in software
development: current practice. IEEE Software, March 1998, pp. 34-45.

[23] Z.150: Users Requirements Notation. Recommendation to ITU-T Study Group 17.
Available at URN web site. http://www.usecasemaps.org/urn/.

